Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 20 , ISSUE 3 ( 2016 ) > List of Articles

BRIEF COMMUNICATION

Advanced pressure control modes of ventilation in cardiac surgery: Scanty evidence or unexplored terrain?

Satyen Parida, Prasanna Udupi Bidkar

Keywords : cardiac surgery, ventilation,Advanced pressure control modes

Citation Information : Parida S, Bidkar PU. Advanced pressure control modes of ventilation in cardiac surgery: Scanty evidence or unexplored terrain?. Indian J Crit Care Med 2016; 20 (3):169-172.

DOI: 10.4103/0972-5229.178181

License: CC BY-ND 3.0

Published Online: 00-03-2016

Copyright Statement:  Copyright © 2016; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Lung atelectasis resulting after cardiopulmonary bypass (CPB) can result in increased intrapulmonary shunting and consequent hypoxemia. Advanced pressure control modes of ventilation might have at least a theoretical advantage over conventional modes by assuring a minimum target tidal volume delivery at reasonable pressures, thus having potential advantages while ventilating patients with pulmonary atelectasis postcardiac surgery. However, the utility of these modes in the post-CPB setting have not been widely investigated, and their role in cardiac intensive care, therefore, remains quite limited.


PDF Share
  1. Imura H, Caputo M, Lim K, Ochi M, Suleiman MS, Shimizu K, et al. Pulmonary injury after cardiopulmonary bypass: Beneficial effects of low-frequency mechanical ventilation. J Thorac Cardiovasc Surg 2009;137:1530-7.
  2. Taggart DP, el-Fiky M, Carter R, Bowman A, Wheatley DJ. Respiratory dysfunction after uncomplicated cardiopulmonary bypass. Ann Thorac Surg 1993;56:1123-8.
  3. Duggan M, Kavanagh BP. Atelectasis in the perioperative patient. Curr Opin Anaesthesiol 2007;20:37-42.
  4. Magnusson L, Zemgulis V, Wicky S, Tydén H, Thelin S, Hedenstierna G. Atelectasis is a major cause of hypoxemia and shunt after cardiopulmonary bypass: An experimental study. Anesthesiology 1997;87:1153-63.
  5. Tenling A, Hachenberg T, Tydén H, Wegenius G, Hedenstierna G. Atelectasis and gas exchange after cardiac surgery. Anesthesiology 1998;89:371-8.
  6. Dreyfuss D, Saumon G. Ventilator-induced lung injury. In: Tobin MJ, editor. Principles and Practice of Mechanical Ventilation. New York: McGraw-Hill; 1994. p. 793-811.
  7. Parker JC, Hernandez LA, Peevy KJ. Mechanisms of ventilator-induced lung injury. Crit Care Med 1993;21:131-43.
  8. Amato MB, Barbas CS, Medeiros DM, Schettino Gde P, Lorenzi Filho G, Kairalla RA, et al. Beneficial effects of the "open lung approach" with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 1995;152(6 Pt 1):1835-46.
  9. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998;338:347-54.
  10. International consensus conferences in intensive care medicine. Ventilator-associated lung injury in ARDS. American Thoracic Society, European Society of Intensive Care Medicine, Societé de Réanimation Langue Française. Intensive Care Med 1999;25:1444-52.
  11. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med 2000;342:1301-8.
  12. Lellouche F, Dionne S, Simard S, Bussières J, Dagenais F. High tidal volumes in mechanically ventilated patients increase organ dysfunction after cardiac surgery. Anesthesiology 2012;116:1072-82.
  13. Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med 2013;369:428-37.
  14. Stock MC, Downs JB, Frolicher DA. Airway pressure release ventilation. Crit Care Med 1987;15:462-6.
  15. Rathgeber J, Schorn B, Falk V, Kazmaier S, Spiegel T, Burchardi H. The influence of controlled mandatory ventilation (CMV), intermittent mandatory ventilation (IMV) and biphasic intermittent positive airway pressure (BIPAP) on duration of intubation and consumption of analgesics and sedatives. A prospective analysis in 596 patients following adult cardiac surgery. Eur J Anaesthesiol 1997;14:576-82.
  16. Putensen C, Zech S, Wrigge H, Zinserling J, Stüber F, Von Spiegel T, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001;164:43-9.
  17. Räsänen J, Downs JB, Stock MC. Cardiovascular effects of conventional positive pressure ventilation and airway pressure release ventilation. Chest 1988;93:911-5.
  18. Willeput R, Rondeux C, De Troyer A. Breathing affects venous return from legs in humans. J Appl Physiol Respir Environ Exerc Physiol 1984;57:971-6.
  19. Takata M, Wise RA, Robotham JL. Effects of abdominal pressure on venous return: Abdominal vascular zone conditions. J Appl Physiol 1990;69:1961-72.
  20. Sulzer CF, Chioléro R, Chassot PG, Mueller XM, Revelly JP. Adaptive support ventilation for fast tracheal extubation after cardiac surgery: A randomized controlled study. Anesthesiology 2001;95:1339-45.
  21. Petter AH, Chioléro RL, Cassina T, Chassot PG, Müller XM, Revelly JP. Automatic "respirator/weaning" with adaptive support ventilation: The effect on duration of endotracheal intubation and patient management. Anesth Analg 2003;97:1743-50.
  22. Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: A systematic review and meta-analysis. Lancet Respir Med 2014;2:1007-15.
  23. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013 28;369:2126-36.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.