Indian Journal of Critical Care Medicine

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 22 , ISSUE 9 ( 2018 ) > List of Articles


Evaluating Extravascular Lung Water in Sepsis: Three Lung-Ultrasound Techniques Compared against Transpulmonary Thermodilution

Dimitrios Karakitsos, Abdulrahman Alharthy, Lawrence Marshall Gillman, Michael Blaivas, Brian M. Buchanan, Peter G. Brindley, Anan Wattanathum

Keywords : Acute interstitial syndrome, B-lines, extravascular lung water, lung ultrasound, transpulmonary thermodilution

Citation Information : Karakitsos D, Alharthy A, Gillman LM, Blaivas M, Buchanan BM, Brindley PG, Wattanathum A. Evaluating Extravascular Lung Water in Sepsis: Three Lung-Ultrasound Techniques Compared against Transpulmonary Thermodilution. Indian J Crit Care Med 2018; 22 (9):650-655.

DOI: 10.4103/ijccm.IJCCM_256_18

License: CC BY-ND 3.0

Published Online: 01-04-2015

Copyright Statement:  Copyright © 2018; The Author(s).


Background: Excessive extravascular lung water (EVLW) is associated with increased morbidity and mortality. We compared three lung-ultrasound (L-US) techniques against the reference-standard transpulmonary thermodilution (TPTD) technique to access EVLW. Materials and Methods: This was a prospective, single-blind, cross-sectional study. Forty-four septic patients were enrolled. EVLW index was measured by the TPTD method, and an index of ≥10 mL/kg was considered diagnostic of pulmonary edema. EVLW index was then compared to three established bedside L-US protocols that evaluate sonographic B-lines: (1) a 28-zone protocol (total B-line score [TBS]) (2) a scanning 8-region examination, and (3) a 4-point examination. Results: Eighty-nine comparisons were obtained. A statistically significant positive correlation was found between L-US TBS and an EVLW index ≥10 mL/kg (r = 0.668,P < 0.001). The 28-zone protocol score ≥39 has a sensitivity of 81.6% and a specificity of 76.5% to define EVLW index ≥10 mL/kg. In contrast, the positive 4-point examination and scanning 8-regions showed low sensitivity (23.7% and 50.0%, respectively) but high specificity (96.1% and 88.2%, respectively). Ten patients with a total of 21 comparisons met criteria for acute respiratory distress syndrome (ARDS). In this subgroup, only the TBS had statistically significant positive correlation to EVLW (r = 0.488,P = 0.025). Conclusion: L-US is feasible in patients with severe sepsis. In addition, L-US 28-zone protocol demonstrated high specificity and better sensitivity than abbreviated 4- and 8-zone protocols. In ARDS, the L-US 28-zone protocol was more accurate than the 4- and 8-zone protocols in predicting EVLW. Consideration of limitations of the latter protocols may prevent clinicians from reaching premature conclusions regarding the prediction of EVLW. Trial Registration: ISRCTN11419081. Registered 4 February 2015 retrospectively.

PDF Share
  1. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013;41:580-637.
  2. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients. Chest 2002;122:2080-6.
  3. Bongard FS, Matthay M, Mackersie RC, Lewis FR. Morphologic and physiologic correlates of increased extravascular lung water. Surgery 1984;96:395-403.
  4. Lichtenstein DA. Lung ultrasound in the critically ill. Ann Intensive Care 2014;4:1.
  5. Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med 2013;41:472-80.
  6. Sibbald WJ, Warshawski FJ, Short AK, Harris J, Lefcoe MS, Holliday RL, et al. Clinical studies of measuring extravascular lung water by the thermal dye technique in critically ill patients. Chest 1983;83:725-31.
  7. Tagami T, Sawabe M, Kushimoto S, Marik PE, Mieno MN, Kawaguchi T, et al. Quantitative diagnosis of diffuse alveolar damage using extravascular lung water. Crit Care Med 2013;41:2144-50.
  8. Wang H, Cui N, Su L, Long Y, Wang X, Zhou X, et al. Prognostic value of extravascular lung water and its potential role in guiding fluid therapy in septic shock after initial resuscitation. J Crit Care 2016;33:106-13.
  9. Enghard P, Rademacher S, Nee J, Hasper D, Engert U, Jörres A, et al. Simplified lung ultrasound protocol shows excellent prediction of extravascular lung water in ventilated intensive care patients. Crit Care 2015;19:36.
  10. Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med 2012;38:577-91.
  11. Agricola E, Bove T, Oppizzi M, Marino G, Zangrillo A, Margonato A, et al. “Ultrasound comet-tail images”: A marker of pulmonary edema: A comparative study with wedge pressure and extravascular lung water. Chest 2005;127:1690-5.
  12. Picano E, Pellikka PA. Ultrasound of extravascular lung water: A new standard for pulmonary congestion. Eur Heart J 2016;37:2097-104.
  13. Lichtenstein D. Lung ultrasound in acute respiratory failure an introduction to the BLUE-protocol. Minerva Anestesiol 2009;75:313-7.
  14. Jambrik Z, Monti S, Coppola V, Agricola E, Mottola G, Miniati M, et al. Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol 2004;93:1265-70.
  15. Soldati G, Copetti R, Sher S. Sonographic interstitial syndrome: The sound of lung water. J Ultrasound Med 2009;28:163-74.
  16. Volpicelli G, Mussa A, Garofalo G, Cardinale L, Casoli G, Perotto F, et al. Bedside lung ultrasound in the assessment of alveolar-interstitial syndrome. Am J Emerg Med 2006;24:689-96.
  17. Baldi G, Gargani L, Abramo A, D'Errico L, Caramella D, Picano E, et al. Lung water assessment by lung ultrasonography in intensive care: A pilot study. Intensive Care Med 2013;39:74-84.
  18. Volpicelli G, Skurzak S, Boero E, Carpinteri G, Tengattini M, Stefanone V, et al. Lung ultrasound predicts well extravascular lung water but is of limited usefulness in the prediction of wedge pressure. Anesthesiology 2014;121:320-7.
  19. Lichtenstein D, Mézière G, Biderman P, Gepner A, Barré O. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med 1997;156:1640-6.
  20. Zhang Z, Lu B, Ni H. Prognostic value of extravascular lung water index in critically ill patients: A systematic review of the literature. J Crit Care 2012;27:420, e1-8.
  21. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016;315:801-10.
  22. Lichtenstein DA, Mezière GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: The BLUE protocol. Chest 2008;134:117-25.
  23. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: The Berlin definition. JAMA 2012;307:2526-33.
  24. Gattinoni L, Caironi P, Pelosi P, Goodman LR. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 2001;164:1701-11.
  25. Pelosi P, Crotti S, Brazzi L, Gattinoni L. Computed tomography in adult respiratory distress syndrome: What has it taught us? Eur Respir J 1996;9:1055-62.
  26. Zhao Z, Jiang L, Xi X, Jiang Q, Zhu B, Wang M, et al. Prognostic value of extravascular lung water assessed with lung ultrasound score by chest sonography in patients with acute respiratory distress syndrome. BMC Pulm Med 2015;15:98.
  27. Copetti R, Soldati G, Copetti P. Chest sonography: A useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome. Cardiovasc Ultrasound 2008;6:16.
  28. Corradi F, Brusasco C, Pelosi P. Chest ultrasound in acute respiratory distress syndrome. Curr Opin Crit Care 2014;20:98-103.
  29. Valentine SL, Sapru A, Higgerson RA, Spinella PC, Flori HR, Graham DA, et al. Fluid balance in critically ill children with acute lung injury. Crit Care Med 2012;40:2883-9.
  30. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006;354:2564-75.
  31. Lange NR, Schuster DP. The measurement of lung water. Crit Care 1999;3:R19-R24.
  32. Sakka SG, Reuter DA, Perel A. The transpulmonary thermodilution technique. J Clin Monit Comput 2012;26:347-53.
  33. Miglioranza MH, Gargani L, Sant'Anna RT, Rover MM, Martins VM, Mantovani A, et al. Lung ultrasound for the evaluation of pulmonary congestion in outpatients: A comparison with clinical assessment, natriuretic peptides, and echocardiography. JACC Cardiovasc Imaging 2013;6:1141-51.
  34. Volpicelli G, Caramello V, Cardinale L, Mussa A, Bar F, Frascisco MF, et al. Bedside ultrasound of the lung for the monitoring of acute decompensated heart failure. Am J Emerg Med 2008;26:585-91.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.