Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 24 , ISSUE 10 ( October, 2020 ) > List of Articles

Covid-19 Review

Mechanisms of Hypoxia in COVID-19 Patients: A Pathophysiologic Reflection

Mohana Nitsure, Bhakti Sarangi, Guruprasad H Shankar, Venkat S Reddy, Ajay Walimbe, Varsha Sharma

Keywords : Acute respiratory distress syndrome, COVID-19, Hypoxemia, Intra-pulmonary arteriovenous anastomoses

Citation Information : Nitsure M, Sarangi B, Shankar GH, Reddy VS, Walimbe A, Sharma V. Mechanisms of Hypoxia in COVID-19 Patients: A Pathophysiologic Reflection. Indian J Crit Care Med 2020; 24 (10):967-970.

DOI: 10.5005/jp-journals-10071-23547

License: CC BY-NC 4.0

Published Online: 25-01-2021

Copyright Statement:  Copyright © 2020; The Author(s).


Abstract

COVID-19 causes severe hypoxemia which fulfills the criteria of ARDS but is not accompanied by typical features of the syndrome. The combination of factors including low P/F ratios, high A-a gradient, relatively preserved lung mechanics, and normal pulmonary pressures may imply a process occurring on the vascular side of the alveolar–capillary unit. The scant but rapidly evolving data available on the pathophysiology are seemingly conflicting, indicating the relative dominance of intrapulmonary shunting or dead space in different studies. In this hypothesis paper, we attempt to gather and explain these observations within a unified conceptual framework by invoking the relative contributions of microvascular thrombosis, along with two proposed vascular mechanisms of capillary flow redistribution and flow through intrapulmonary arteriovenous anastomoses (IPAVA).


PDF Share
  1. Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. JAMA 2020. DOI: 10.1001/jama.2020.6825.
  2. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med 2020;46(6):1099–1102. DOI: 10.1007/s00134-020-06033-2.
  3. Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiumello D. COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med 2020;202(4):618–619. DOI: 10.1164/rccm.202004-1106LE.
  4. Mauri T, Spinelli E, Scotti E, Colussi G, Basile MC, Crotti S, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019. Crit Care Med 2020. DOI: 10.1097/CCM.0000000000004386.
  5. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res 2020;220:1–13. DOI: 10.1016/j.trsl.2020.04.007.
  6. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, china. JAMA 2020;323(11):1061–1069. DOI: 10.1001/jama.2020.1585.
  7. Oudkerk M, Büller HR, Kuijpers D, van Es N, Oudkerk SF, McLoud TC, et al. Diagnosis, prevention, and treatment of thromboembolic complications in COVID-19: report of the national institute for public health of the Netherlands. Radiology 2020. 201629. DOI: 10.1148/radiol.2020201629.
  8. Ranucci M, Ballotta A, Di Dedda U, Bayshnikova E, Dei Poli M, Resta M, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 2020;18(7):1747–1751. DOI: 10.1111/jth.14854.
  9. Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. J Med Virol 2020. DOI: 10.1002/jmv.25819.
  10. Jacob A, Hensley LK, Safratowich BD, Quigg RJ, Alexander JJ. The role of the complement cascade in endotoxin-induced septic encephalopathy. Lab Invest 2007;87(12):1186–1194. DOI: 10.1038/labinvest.3700686.
  11. Kröncke KD, Fehsel K, Kolb-Bachofen V. Inducible nitric oxide synthase in human diseases. Clin Exp Immunol 1998;113(2):147. DOI: 10.1046/j.1365-2249.1998.00648.x.
  12. Lovering AT, Duke JW, Elliott JE. Intrapulmonary arteriovenous anastomoses in humans–response to exercise and the environment. J Physiol 2015;593(3):507–520. DOI: 10.1113/jphysiol.2014.275495.
  13. Lovering AT, Riemer RK, Thébaud B. Intrapulmonary arteriovenous anastomoses. Physiological, pathophysiological, or both. Ann Am Thorac Soc 2013;10(5):504–508. DOI: 10.1513/AnnalsATS.201308-265ED.
  14. Vettukattil JJ. Pathogenesis of pulmonary arteriovenous malformations:role of hepatopulmonary interactions. Heart 2002;88(6):561–563. DOI: 10.1136/heart.88.6.561.
  15. Norris HC, Mangum TS, Kern JP, Elliott JE, Beasley KM, Goodman RD, et al. Intrapulmonary arteriovenous anastomoses in humans with chronic obstructive pulmonary disease: implications for cryptogenic stroke? Exp Physiol 2016;101(8):1128–1142. DOI: 10.1113/EP085811.
  16. Dunham-Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LR, Mewburn JD, et al. Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest 2017;151(1):181–192. DOI: 10.1016/j.chest.2016.09.001.
  17. Tobin MJ. Basing respiratory management of coronavirus on physiological principles. Am J Respir Crit Care Med 2020;201(11): 1319–1320. DOI: 10.1164/rccm.202004-1076ED.
  18. Lang M, Som A, Mendoza DP, Flores EJ, Reid N, Carey D, et al. Hypoxaemia related to COVID-19: vascular and perfusion abnormalities on dual-energy CT. Lancet Infect Dis 2020.
  19. Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med 2017;195(4):438–442. DOI: 10.1164/rccm.201605- 1081CP.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.