Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 24 , ISSUE 2 ( February, 2020 ) > List of Articles

Original Article

Longitudinal Study of CPK-MB and Echocardiographic Measures of Myocardial Dysfunction in Pediatric Sepsis: Are Patients with Shock Different from Those without?

Arun K Baranwal, Geddam Deepthi, Manoj K Rohit, Suresh K Angurana, Praveen Kumar-M

Keywords : Cardiac biomarkers, Creatine kinase-MB, Echocardiography, Myocardial dysfunction, Sepsis, Septic shock

Citation Information : Baranwal AK, Deepthi G, Rohit MK, Angurana SK, Kumar-M P. Longitudinal Study of CPK-MB and Echocardiographic Measures of Myocardial Dysfunction in Pediatric Sepsis: Are Patients with Shock Different from Those without?. Indian J Crit Care Med 2020; 24 (2):109-115.

DOI: 10.5005/jp-journals-10071-23340

License: CC BY-NC 4.0

Published Online: 00-02-2020

Copyright Statement:  Copyright © 2020; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Background: Sepsis-induced myocardial dysfunction has implications on outcome. For lack of echocardiography in resource-limited settings, myocardial biomarkers may be an alternative monitoring tool. Objective: This study was planned to explore the longitudinal behavior of creatine phosphokinase-MB (CPK-MB) in children with sepsis with and without shock, and its correlation with clinical and echocardiographic parameters over the first 10 days. Design: Prospective observational study. Setting: Tertiary care hospital in a lower-middle-income economy of South Asia. Patients: Children (3 months to 12 years) with nonshock sepsis (NSS) (n = 40) and septic shock survivors (SSSs) (n = 40) after optimal resuscitation. Patients with catecholamine refractory shock, preexisting heart disease, and cardiorespiratory event within the past 1 month were excluded from the study. Measurements and main results: Pediatric logistic organ dysfunction (PeLOD) score, vasoactive inotrope score (VIS), CPK-MB, and echocardiographic measures of myocardial function were recorded on days 1, 3, 7, and 10. Echocardiography was repeated at 1 month. Both groups were similar at baseline. The SSSs had higher CPK-MB (180 vs 53 IU/L; p < 0.001) and PeLOD score (2 ± 0.4 vs 11.7 ± 5.1, p < 0.001) on day 1 compared to the NSS children. More than half of the SSS and none of the NSS patients had myocardial dysfunction. Reduction in CPK-MB over 10 days correlated well with improvement in PeLOD (p < 0.01), VIS (p = 0.04), and echocardiographic measures of myocardial dysfunction (p < 0.05) among SSSs. At 1 month follow-up, all had normal echocardiography. Conclusion: The SSSs had markedly elevated CPK-MB, and its fall paralleled the improvement in clinical status and myocardial dysfunctions. The CPK-MB could be a potential monitoring tool for septic cardiomyopathy in resource-limited settings.


  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016;315(8):801–810. DOI: 10.1001/jama.2016.0287.
  2. Mangia CMF, Kissoon N, Carcillo JA. Sepsis and septic shock: a global overview. J Pediatr Infect Dis 2009;4(2):71–76. DOI: 10.3233/JPI-2009-0157.
  3. Weiss SL, Fitzgerald JC, Pappachan J, Wheeler D, Jaramillo-Bustamante JC, Salloo A, et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med 2015;191(10):1147–1157. DOI: 10.1164/rccm.201412-2323OC.
  4. Sankar J, Ismail J, Sankar MJ, Suresh CP, Meena RS. Fluid bolus over 15-20 vs 5-10 minutes each in the first hour of resuscitation in children with septic shock: a randomized controlled trial. Pediatr Crit Care Med 2017;18(10):e435–e445. DOI: 10.1097/PCC.0000000000001269.
  5. Sankar J, Ismail J, Das R, Dev N, Chitkara A, Sankar MJ. Effect of severe vitamin D deficiency at admission on shock reversal in children with septic shock. J Intensive Care Med 2019;34(5):397–403. DOI: 10.1177/0885066617699802.
  6. Poddar B, Gurjar M, Singh S, Aggarwal A, Baronia A. Reduction in procalcitonin level and outcome in critically ill children with severe sepsis/septic shock-a pilot study. J Crit Care 2016;36:230–233. DOI: 10.1016/j.jcrc.2016.07.022.
  7. Ghosh S, Baranwal AK, Bhatia P, Nallasamy K. Suspecting hyperferritinemic sepsis in iron-deficient population: do we need a lower plasma ferritin threshold? Pediatr Crit Care Med 2018;19(7):e367–e373. DOI: 10.1097/PCC.0000000000001584.
  8. Raj S, Killinger JS, Gonzalez JA, Lopez L. Myocardial dysfunction in pediatric septic shock. J Pediatr 2014;164(1):72–77. DOI: 10.1016/j.jpeds.2013.09.027.
  9. Sankar J, Das RR, Jain A, Dewangan S, Khilnani P, Yadav D, et al. Prevalence and outcome of diastolic dysfunction in children with fluid refractory septic shock--a prospective observational study. Pediatr Crit Care Med 2014;15(9):e370–e378. DOI: 10.1097/PCC.0000000000000249.
  10. Jain A, Sankar J, Anubhuti A, Yadav DK, Sankar MJ. Prevalence and outcome of sepsis-induced myocardial dysfunction in children with ‘Sepsis’ ‘With’ and ‘Without Shock’-a prospective observational study. J Trop Pediatr 2018;64(6):501–509. DOI: 10.1093/tropej/fmx105.
  11. Ranjit S, Kissoon N. Bedside echocardiography is useful in assessing children with fluid and inotrope resistant septic shock. Indian J Crit Care Med 2013;17(4):224–230. DOI: 10.4103/0972-5229.118426.
  12. El-Zayat RS, Shalaby AG. Mitral annular plane systolic excursion as a predictor of mortality in children with septic shock. Pediatr Crit Care Med 2018;19(9):e486–e494. DOI: 10.1097/PCC.0000000000001661.
  13. Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE. Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 1996;183(3):949–958. DOI: 10.1084/jem.183.3.949.
  14. Thiru Y, Pathan N, Bignall S, Habibi P, Levin M. A myocardial cytotoxic process is involved in the cardiac dysfunction of meningococcal septic shock. Crit Care Med 2000;28(8):2979–2983. DOI: 10.1097/00003246-200008000-00049.
  15. Turner A, Tsamitros M, Bellomo R. Myocardial cell injury in septic shock. Crit Care Med 1999;27(9):1775–1780. DOI: 10.1097/00003246-199909000-00012.
  16. Bouhemad B, Nicolas-Robin A, Arbelot C, Arthaud M, Féger F, Rouby J-J. Isolated and reversible impairment of ventricular relaxation in patients with septic shock. Crit Care Med 2008;36(3):766–774. DOI: 10.1097/CCM.0B013E31816596BC.
  17. Pulido JN, Afessa B, Masaki M, Yuasa T, Gillespie S, Herasevich V, et al. Clinical spectrum, frequency, and significance of myocardial dysfunction in severe sepsis and septic shock. Mayo Clin Proc 2012;87(7):620–628. DOI: 10.1016/j.mayocp.2012.01.018.
  18. Oliveira NS, Silva VR, Castelo JS, Elias-Neto J, Pereira FEL, Carvalho WB. Serum level of cardiac troponin I in pediatric patients with sepsis or septic shock. Pediatr Crit Care Med 2008;9(4):414–417. DOI: 10.1097/PCC.0b013e31817e2b33.
  19. Yu Y-J, Su A-H, Yang H-B, Chen J-X. Intermedin1-53 protects cardiac function in rats with septic shock via inhibiting oxidative stress and cardiomyocyte apoptosis. Eur Rev Med Pharmacol Sci 2018;22(9):2906–2913. DOI: 10.26355/eurrev_201805_14993.
  20. El-Awady MS, Nader MA, Sharawy MH. The inhibition of inducible nitric oxide synthase and oxidative stress by agmatine attenuates vascular dysfunction in rat acute endotoxemic model. Environ Toxicol Pharmacol 2017;55:74–80. DOI: 10.1016/j.etap.2017. 08.009.
  21. Fenton KE, Sable CA, Bell MJ, Patel KM, Berger JT. Increases in serum levels of troponin I are associated with cardiac dysfunction and disease severity in pediatric patients with septic shock. Pediatr Crit Care Med 2004;5(6):533–538. DOI: 10.1097/01.PCC.0000144711.97646.0C.
  22. Basu S, Frank LH, Fenton KE, Sable CA, Levy RJ, Berger JT. Two-dimensional speckle tracking imaging detects impaired myocardial performance in children with septic shock, not recognized by conventional echocardiography. Pediatr Crit Care Med 2012;13(3):259–264. DOI: 10.1097/PCC.0b013e3182288445.
  23. Lodha R, Arun S, Vivekanandhan S, Kohli U, Kabra SK. Myocardial cell injury is common in children with septic shock. Acta Paediatr 2009;98(3):478–481. DOI: 10.1111/j.1651-2227.2008.01095.x.
  24. Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005;6(1):2–8. DOI: 10.1097/01.PCC.0000149131.72248.E6.
  25. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med 2008;34(1):17–60. DOI: 10.1007/s00134-007-0934-2.
  26. Kleinman ME, Chameides L, Schexnayder SM, Samson RA, Hazinski MF, Atkins DL, et al. Part 14: pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010;122(18 Suppl 3):S876–S908. DOI: 10.1161/CIRCULATIONAHA.110.971101.
  27. Gaies MG, Gurney JG, Yen AH, Napoli ML, Gajarski RJ, Ohye RG, et al. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med 2010;11(2):234–238. DOI: 10.1097/PCC.0b013e3181b806fc.
  28. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Austria. 2018. available at https://www.R-project.org/, accessed at June 30, 2018.
  29. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016, available at http://ggplot2.org, accessed at June 30, 2018.
  30. Fox J, Weisberg S. An {R} Companion to Applied Regression, 2nd ed. Thousand Oaks CA: Sage; 2011, available at http://socserv.socsci.mcmaster.ca/jfox/Books/Companion, accessed at June 30, 2018.
  31. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011;12:77. DOI: 10.1186/1471-2105-12-77.
  32. Trapletti A, Hornik K. tseries: Time Series Analysis and Computational Finance. R package version 0.10-45. 2018, available at https://CRAN.R-project.org/package=tseries, accessed at June 30, 2018.
  33. Hawiger J. Heartfelt sepsis: microvascular injury due to genomic storm. Kardiol Pol 2018;76(8):1203–1216. DOI: 10.5603/KP.a2018.0146.
  34. Ceneviva G, Paschall JA, Maffei F, Carcillo JA. Hemodynamic support in fluid-refractory pediatric septic shock. Pediatrics 1998;102(82):e19. DOI: 10.1542/peds.102.2.e19.
  35. Williams FZ, Sachdeva R, Travers CD, Walson KH, Hebbar KB. Characterization of myocardial dysfunction in fluid- and catecholamine-refractory pediatric septic shock and its clinical significance. J Intensive Care Med 2019;34(1):17–25. DOI: 10.1177/0885066616685247.
  36. Walley KR. Sepsis-induced myocardial dysfunction. Curr Opin Crit Care 2018;24(4):292–299. DOI: 10.1097/MCC.0000000000000507.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.