Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 24 , ISSUE 6 ( June, 2020 ) > List of Articles

LETTER TO THE EDITOR

“Six-dial Strategy”—Mechanical Ventilation during Cardiopulmonary Resuscitation

Ankit Kumar Sahu, Ghanashyam Timilsina, Roshan Mathew, Nayer Jamshed, Praveen Aggarwal

Citation Information : Sahu AK, Timilsina G, Mathew R, Jamshed N, Aggarwal P. “Six-dial Strategy”—Mechanical Ventilation during Cardiopulmonary Resuscitation. Indian J Crit Care Med 2020; 24 (6):487-489.

DOI: 10.5005/jp-journals-10071-23464

License: CC BY-NC 4.0

Published Online: 30-07-2020

Copyright Statement:  Copyright © 2020; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

As per current guidelines, whenever an advanced airway is in place during cardiopulmonary resuscitation, positive pressure ventilation should be provided without pausing for chest compression. Positive pressure ventilation can be provided through bag-valve resuscitator (BV) or mechanical ventilator (MV), which was found to be equally efficacious. In a busy emergency department, with less trained personnel use of MV is advantageous over BV in terms of reducing human errors and relieving the airway manager to focus on other resuscitation tasks. Currently, there are no guidelines specific to MV settings in cardiac arrest. We present a concept of “six-dial ventilator strategy during CPR” that encompasses the evidence-based settings appropriate during chest compression. We suggest use of volume control ventilation with the following settings: (1) positive end-expiratory pressure of 0 cm of water (to allow venous return), (2) tidal volume of 8 mL/kg with fraction of inspired oxygen at 100% (for adequate oxygenation), (3) respiratory rate of 10 per minute (for adequate ventilation), (4) maximum peak inspiratory pressure or Pmax alarm of 60 cm of water (to allow tidal volume delivery during chest compression), (5) switching OFF trigger (to avoid trigger by chest recoil), and (6) inspiratory to expiratory time ratio of 1:5 (to provide adequate inspiratory time of 1 second).


  1. Olasveengen TM, de Caen AR, Mancini ME, Maconochie IK, Aickin R, Atkins DL, et al. 2017 International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations summary. Resuscitation 2017;121: 201–214. DOI: 10.1016/j.resuscitation.2017.10.021.
  2. Link Mark S, Berkow Lauren C, Kudenchuk Peter J, Halperin Henry R, Hess Erik P, Moitra Vivek K, et al. Part 7: adult dvanced cardiovascular life support. Circulation 2015;132:S444–S464. DOI: 10.1161/CIR.0000000000000261.
  3. Perkins GD, Olasveengen TM, Maconochie I, Soar J, Wyllie J, Greif R, et al. European resuscitation council guidelines for resuscitation: 2017 update. Resuscitation 2018;123:43–50. DOI: 10.1016/j.resuscitation.2017.12.007.
  4. Kleinman Monica E, Brennan Erin E, Goldberger Zachary D, Swor Robert A, Terry M, Bobrow BJ, et al. Part 5: adult basic life support and cardiopulmonary resuscitation quality. Circulation 2015;132(18 Suppl 2):S414–S435. DOI: 10.1161/CIR.0000000000000259.
  5. Johannigman JA, Branson RD, Johnson DJ, Davis K, Hurst JM. Out-of-hospital ventilation: bag-valve device vs. Transport ventilator. Acad Emerg Med 1995;2(8):719–724. DOI: 10.1111/j.1553-2712.1995.tb03624.x.
  6. Weiss SJ, Ernst AA, Jones R, Ong M, Filbrun T, Augustin C, et al. Automatic transport ventilator vs bag valve in the EMS setting: a prospective, Randomized trial. South Med J 2005;98(10):970–976. DOI: 10.1097/01.smj.0000182177.01436.70.
  7. Gabrielli A, Layon AJ, Idris AH. Physiology of ventilation during cardiac arrest. In: Ornato JP, Peberdy MA. Cardiopulmonary Resuscitation. Totowa, NJ: Humana Press; 2005. pp. 39–94. DOI: 10.1385/1-59259-814-5:039.
  8. Guo L, Xie J, Huang Y, Pan C, Yang Y, Qiu H, et al. Higher PEEP improves outcomes in ARDS patients with clinically objective Positive oxygenation response to PEEP: a systematic review and meta-analysis. BMC Anesthesiol 2018;18(1):172. DOI: 10.1186/s12871-018-0631-4.
  9. Hevesi ZG, Thrush DN, Downs JB, Smith RA. Cardiopulmonary resuscitation: effect of CPAP on gas exchange during chest compressions. Anesthesiology 1999;90(4):1078–1083. DOI: 10.1097/00000542-199904000-00022.
  10. Ido Y, Goto H, Lavin MJ, Robinson JD, Mangold JV, Arakawa K. Effects of Positive end-expiratory pressure on carotid blood flow during closed-chest cardiopulmonary resuscitation in dogs. Anesth Analg 1982;61(7):557–560. DOI: 10.1213/00000539-198207000-00002.
  11. Duchatelet C, Wolfskeil M, Vanwulpen M, Idrissi S-H. Effect of positive end-expiratory pressure during cardiopulmonary resuscitation on short-term survival. Resuscitation 2019;142:e7–e8. DOI: 10.1016/j.resuscitation.2019.06.029.
  12. Lurie KG, Nemergut EC, Yannopoulos D, Sweeney M. The physiology of cardiopulmonary resuscitation. Anesth Analg 2016;122(3):767–783. DOI: 10.1213/ANE.0000000000000926.
  13. Spindelboeck W, Schindler O, Moser A, Hausler F, Wallner S, Strasser C, et al. Increasing arterial oxygen partial pressure during cardiopulmonary resuscitation is associated with improved rates of hospital admission. Resuscitation 2013;84(6):770–775. DOI: 10.1016/j.resuscitation.2013.01.012.
  14. Aufderheide TP, Lurie KG. Death by hyperventilation: a common and life-threatening problem during cardiopulmonary resuscitation. Crit Care Med 2004;32(9 Suppl):S345–S351. DOI: 10.1097/01.CCM.0000134335.46859.09.
  15. Yannopoulos D, Sigurdsson G, McKnite S, Benditt D, Lurie KG. Reducing ventilation frequency combined with an inspiratory impedance device improves CPR efficiency in swine model of cardiac arrest. Resuscitation 2004;61(1):75–82. DOI: 10.1016/j.resuscitation.2003.12.006.
  16. Samson RA, Berg MD, Berg RA. Cardiopulmonary resuscitation algorithms, defibrillation and optimized ventilation during resuscitation. Curr Opin Anaesthesiol 2006;19(2):146–156. DOI: 10.1097/01.aco.0000192799.87548.d3.
  17. Vissers G, Soar J, Monsieurs KG. Ventilation rate in adults with a tracheal tube during cardiopulmonary resuscitation: a systematic review. Resuscitation 2017;119:5–12. DOI: 10.1016/j.resuscitation.2017. 07.018.
  18. Ioannidis G, Lazaridis G, Baka S, Mpoukovinas I, Karavasilis V, Lampaki S, et al. Barotrauma and pneumothorax. J Thorac Dis 2015;7(Suppl 1):S38–S43. DOI: 10.3978/j.issn.2072-1439.2015.01.31.
  19. Tan D, Xu J, Shao S, Fu Y, Sun F, Zhang Y, et al. Comparison of different inspiratory triggering settings in automated ventilators during cardiopulmonary resuscitation in a porcine model. PLoS ONE 2017;12(2):e0171869. DOI: 10.1371/journal.pone.0171869.
  20. Beitler JR, Ghafouri TB, Jinadasa SP, Mueller A, Hsu L, Anderson RJ, et al. Favorable Neurocognitive outcome with low tidal volume ventilation after cardiac arrest. Am J Respir Crit Care Med 2017;195:1198–1206. DOI: 10.1164/rccm.201609-1771OC.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.