Indian Journal of Critical Care Medicine

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 24 , ISSUE 8 ( August, 2020 ) > List of Articles


Metabolic Resuscitation Using Hydrocortisone, Ascorbic Acid, and Thiamine: Do Individual Components Influence Reversal of Shock Independently?

Sangeeta Yelle, Boggu Rajyalakshmi

Citation Information : Yelle S, Rajyalakshmi B. Metabolic Resuscitation Using Hydrocortisone, Ascorbic Acid, and Thiamine: Do Individual Components Influence Reversal of Shock Independently?. Indian J Crit Care Med 2020; 24 (8):649-652.

DOI: 10.5005/jp-journals-10071-23515

License: CC BY-NC 4.0

Published Online: 14-12-2020

Copyright Statement:  Copyright © 2020; The Author(s).


Aims and objective: To study the effects of various components of “metabolic resuscitation” on the shock reversal among patients with septic shock Introduction: Sepsis is characterized by dysregulated host response to infection. Mitochondrial dysfunction which occurs early in sepsis is associated with multiorgan dysfunction. Therapies such as adequate resuscitation, early administration of antibiotics, and aggressive monitoring reduced mortality substantially but it still remains high for those with septic shock. Combination of vitamin C, hydrocortisone, and thiamine improved outcome in a retrospective study, but how effective is this therapy in isolation compared to combination has to be known before implementation. Materials and methods: This study is single-center, prospective, randomized nonblinded trial done in septic shock patients admitted to the medical intensive care unit. Subjects were randomized to three groups of hydrocortisone (H), hydrocortisone, ascorbic acid (HA), hydrocortisone, ascorbic acid, thiamine (HAT). Following randomization, they received hydrocortisone 200 mg over 24 hours as infusion, intravenous ascorbic acid 1.5 g every 6 hours, thiamine 200 mg twice daily as allotted and continued till shock reversal or death. Primary outcome is time to shock reversal and secondary outcome is time to vasopressor dose reduction from hemodynamic SOFA score 4–3. Results: Twenty seven subjects were randomized into 3 groups of 9 each, of which 17 (63%) patients met primary outcome and secondary outcome has been studied in 16 (59%) patients. Eight patients (29.5%) died and did not meet either outcome and two patients (7.5%) met secondary outcome but not primary outcome because of discharge to other hospital. There is no difference in time to shock reversal [mean, SD in H (7422, 8348), HA (2528, 3086), HAT (1860, 749), p value 0.17]. There is no difference in time to shock reversal from hemodynamic SOFA 4–3 [mean, SD in H (4935, 6406), HA (2310, 2515), HAT (1800, 1282), p value 0.35]. Conclusion: In patients with septic shock, there is no difference in time to shock reversal comparing individual components of metabolic resuscitation.

  1. Singer M, De Santis V, Vitale D, Jeffcoate W. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet 2004;364(9433):545–548. DOI: 10.1016/S0140-6736(04)16815-3.
  2. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, et al. A network-based analysis of systemic inflammation in humans. Nature 2005;437(7061):1032–1037. DOI: 10.1038/nature03985.
  3. Prauchner CA. Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy. Burns 2017;4(3):471–485. DOI: 10.1016/j.burns.2016.09.023.
  4. Wilson JX. Mechanism of action of vitamin C in sepsis: ascorbate modulates redox signaling in endothelium. Biofactors 2009;35(1):5–13. DOI: 10.1002/biof.7.
  5. De Grooth H, Manubulu-Choo W, Zandvliet AS, Spoelstra-de Man AE, Girbes AR, et al. Vitamin C pharmacokinetics in critically ill patients: a randomized trial of four intravenous regimens. Chest 2018;153(6):1368–1377. DOI: 10.1016/j.chest.2018.02.025.
  6. Victor VV, Guayerbas N, Puerto M, Medina S, De la Fuente M. Ascorbic acid modulates in vitro the function of macrophages from mice with endotoxic shock. Immunopharmacology 2000;46(1):89–101. DOI: 10.1016/S0162-3109(99)00162-9.
  7. Carcamo JM, Pedraza A, Borquez-Ojeda O, Golde DW. Vitamin C suppresses TNF alpha-induced NF kappa B activation by inhibiting I kappa B alpha phosphorylation. Biochemistry 2002;41(43):12995–13002. DOI: 10.1021/bi0263210.
  8. Tanaka H, Matsuda T, Miyagantani Y, Yukioka T, Matsuda H, Shimazaki S. Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration. Arch Surg 2000;135(3):326–331. DOI: 10.1001/archsurg.135.3.326.
  9. Fowler AA, Syed AA, Knowlson S, Sculthorpe R, Farthing D, DeWilde C, et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med 2014;12:32. DOI: 10.1186/1479-5876-12-32.
  10. Zabet MH, Mohammadi M, Ramezani M, Khalili H. Effect of high-dose ascorbic acid on vasopressor's requirement in septic shock. J Res Pharm Pract 2016;5(2):94–100. DOI: 10.4103/2279-042X.179569.
  11. Buehner M, Pamplin J, Studer L, Hughes RL, King BT, Graybill JC, et al. Oxalate nephropathy after continuous infusion of high-dose Vitamin C as an adjunct to burn resuscitation. J Burn Care Res 2016;37(4):e374–e379. DOI: 10.1097/BCR.0000000000000233.
  12. Manzetti S, Zhang J, Van der Spoel D. Thiamin function, metabolism, uptake, and transport. Biochemistry 2014;53(5):821–835. DOI: 10.1021/bi401618y.
  13. Hazell AS, Faim S, Wertheimer G, Silva VR, Marques CS. The impact of oxidative stress in thiamine deficiency: a multifactorial targeting issue. Neurochem Int 2013;62(5):796–802. DOI: 10.1016/j.neuint.2013.01.009.
  14. Gibson GE, Zhang H. Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem Int 2002;40(6):493–504. DOI: 10.1016/S0197-0186(01) 00120-6.
  15. Woolum JA, Abner EL, Kelly A, Thompson Bastin ML, Morris PE, Flannery AH. Effect of thiamine administration on lactate clearance and mortality in patients with septic shock. Crit Care Med 2018;46(11):1747–1752. DOI: 10.1097/CCM.0000000000003311.
  16. Donnino MW, Andersen LW, Chase M, Berg KM, Tidswell M, Giberson T, et al. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Crit Care Med 2016;44(2):360–367. DOI: 10.1097/CCM.0000000000001572.
  17. Andersen LW, Mackenhauer J, Roberts JC, Berg KM, Cocchi MN, Donnino MW. Etiology and therapeutic approach to elevated lactate levels. Mayo Clin Proc 2013;88(10):1127–1140. DOI: 10.1016/j.mayocp.2013.06.012.
  18. Moskowitz A, Anderson LW, Cocchi MN, Karlsson M, Patel PV, Donnino MW. Thiamine as a renal protective agent in septic shock: a secondary analysis of a randomized, double-blind, placebo-controlled trial. Ann Am Thorac Soc 2017;14(5):737–741. DOI: 10.1513/AnnalsATS.201608-656BC.
  19. Donnino MW, Carney E, Cocchi MN, Barbash I, Chase M, Joyce N, et al. Thiamine deficiency in critically ill patients with sepsis. J Crit Care 2010;25(4):576–581. DOI: 10.1016/j.jcrc.2010.03.003.
  20. Nuzzo E, Berg KM, Andersen LW, Balkema J, Montissol S, Cocchi MN, et al. Pyruvate dehydrogenase activity is decreased in the peripheral blood mononuclear cells of patients with sepsis. a prospective observational trial. Ann Am Thorac Soc 2015;12(11):1662–1666. DOI: 10.1513/AnnalsATS.201505-267BC.
  21. Sligl WI, Milner Jr DA, Sundar S, Mphatswe W, Majumdar SR. Safety and efficacy of corticosteroids for the treatment of septic shock: a systematic review and meta-analysis. Clin Infect Dis 2009;49(1):93–101. DOI: 10.1086/599343.
  22. Dendoncker K, Timmermans S, Looveren KV, Cauwer LD, Bosscher KD, Libert C. The nature of the GRE influences the screening for GR-activity enhancing modulators. PLoS One 2017;12(7):e0181101. DOI: 10.1371/journal.pone.0181101.
  23. Annane D, Renault C, Brun-Buisson, Megarbane B, Quenot JP, Siami S, et al. Hydrocortisone plus fludrocortsione for adults with septic shock. N Engl J Med 2018;378(9):809–818. DOI: 10.1056/NEJMoa1705716.
  24. Venaktesh B, Finfer S, Cohen J, Rajbhandari D, Arabi Y, Bellomo R, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med 2018;378(9):797–808. DOI: 10.1056/NEJMoa1705835.
  25. Barabutis N, Khangoora V, Marik PE, Catravas JD. Hydrocortisone and ascorbic acid synergistically protect and repair lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Chest 2017;152(5):954–962. DOI: 10.1016/j.chest.2017.07.014.
  26. Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, vitamin C and thiamine for the treatment of severe sepsis and septic shock: a retrospective before–after study. Chest 2017;151(6):1229–1238. DOI: 10.1016/j.chest.2016.11.036.
  27. Fujita I, Hirano J, Itoh N, Nakanishi T, Tanaka K. Dexamethasone induces sodium-dependant vitamin C transporter in a mouse osteoblastic cell line MC3T3-E1. Br J Nutr 2001;86(2):145–149. DOI: 10.1079/BJN2001406.
  28. Iglesias J, Vassallo AV, Patel VV, Sullivan JB, Cavanaugh J, Elbaga Y. Outcomes of metabolic resuscitation using ascorbic acid, thiamine, and glucocorticoids in the early treatment of sepsis. Chest 2020;158(1):164–173. DOI: 10.1016/j.chest.2020.02.049.
  29. Tomoko F, Nora L, Paul JY, Daniel RF, Glenn ME, Craig JF, etal. Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock the VITAMINS randomized clinical trial. JAMA 2020;323(5):423–431. DOI: 10.1001/jama.2019.22176.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.