Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 25 , ISSUE 12 ( December, 2021 ) > List of Articles

Original Article

Blood Cultures and Molecular Diagnostics in Intensive Care Units to Diagnose Sepsis: A Bayesian Latent Class Model Analysis

Sriram Sampath, Jeswin Baby, Bhuvana Krishna, Nandini Dendukuri, Tinku Thomas

Keywords : Bayesian analysis, Blood culture, Intensive care unit, Molecular diagnostics, Sepsis

Citation Information : Sampath S, Baby J, Krishna B, Dendukuri N, Thomas T. Blood Cultures and Molecular Diagnostics in Intensive Care Units to Diagnose Sepsis: A Bayesian Latent Class Model Analysis. Indian J Crit Care Med 2021; 25 (12):1402-1407.

DOI: 10.5005/jp-journals-10071-24051

License: CC BY-NC 4.0

Published Online: 17-12-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Background: Confirmation of sepsis by standard blood cultures (STD) is often inconclusive due to slow growth and low positivity. Molecular diagnostics (MOL) are faster and may have higher positivity, but test performance can be inaccurately estimated if STD methods are used as comparators. Bayesian latent class models (LCMs) can evaluate diagnostic methods when there is no “gold standard.” Intensive care unit studies that have used LCMs to combine and compare STD and MOL method performance and estimate the prevalence of sepsis have not been described. Patients and methods: Results from an ICU sepsis study that used both tests simultaneously were analyzed. Bayesian LCMs combined prior prevalence of sepsis, prior diagnostic characteristics of the two methods, and the study results to estimate the posterior prevalence and diagnostic characteristics. Sensitivity analyses were performed using objective (published studies) and subjective (expert opinion) prior parameters. Positive predictive values (PPVs) of the prevalence of sepsis were estimated for all combinations of test results. Results: The range of posterior estimates was: sepsis prevalence (0.38–0.88), sensitivities (STD: 0.2–0.35, MOL: 0.56–0.86), and specificities (STD: 0.87–0.99, MOL: 0.72–0.95). The PPV (sepsis) of both tests being positive was (0.72–0.99). Conclusion: LCMs combined two imperfect methods to estimate prevalence, PPV, and diagnostic characteristics. The posterior estimates (STD sensitivity < MOL and STD specificity > MOL) seem to reflect the clinical experience appropriately. The high PPV when both methods show positive results can be useful for ruling in disease.


HTML PDF Share
  1. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 2020;395(10219):200–211. DOI: 10.1016/S0140-6736(19)32989-7.
  2. Fitzpatrick F, Tarrant C, Hamilton V, Kiernan FM, Jenkins D, Krockow EM. Sepsis and antimicrobial stewardship: two sides of the same coin. BMJ Qual Saf 2019;28(9):758–761. DOI: 10.1136/bmjqs-2019-009445.
  3. Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 update. Intensive Care Med 2018;44(6):925–928. DOI: 10.1007/s00134-018-5085-0.
  4. Mylotte JM, Tayara A. Blood cultures: clinical aspects and controversies. Eur J Clin Microbiol Infect Dis 2000;19(3):157–163. DOI: 10.1007/s100960050453.
  5. Florio W, Morici P, Ghelardi E, Barnini S, Lupetti A. Recent advances in the microbiological diagnosis of bloodstream infections. Crit Rev Microbiol 2018;44(3):351–370. DOI: 10.1080/1040841X.2017. 1407745.
  6. Sweeney TE, Liesenfeld O, May L. Expert review of molecular diagnostics diagnosis of bacterial sepsis: why are tests for bacteremia not sufficient? Expert Rev Mol Diagn 2019;19(11):959–962. DOI: 10.1080/14737159.2019.1660644.
  7. Singer M, Deutschman CS, Seymour C, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA – J Am Med Assoc 2016;315(8): 801–810. DOI: 10.1001/jama.2016.0287.
  8. Hui SL, Walter SD. Estimating the error rates of diagnostic tests. Biometrics 1980;36(1):167–171. PMID: 7370371.
  9. Dendukuri N, Joseph L. Bayesian approaches to modeling the conditional dependence between multiple diagnostic tests. Biometrics 2001;57(1):158–167. DOI: 10.1111/j.0006-341x.2001.00158.x.
  10. Joseph L, Gyorkos TW, Coupal L. Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol 1995;141(3):263–272. DOI: 10.1093/oxfordjournals.aje.a117428.
  11. Bloos F, Hinder F, Becker K, Sachse S, Dessap AM, Straube E, et al. A multicenter trial to compare blood culture with polymerase chain reaction in severe human sepsis. Intensive Care Med 2010;36(2):241–247. DOI: 10.1007/s00134-009-1705-z.
  12. Altun O, Almuhayawi M, Lüthje P, Taha R, Ullberg M, Özenci V. Controlled evaluation of the new BacT/Alert Virtuo blood culture system for detection and time to detection of bacteria and yeasts. J Clin Microbiol 2016;54(4):1148–1151. DOI: 10.1128/JCM.03362-15.
  13. Bhat BV, Prasad P, Ravi Kumar VB, Harish BN, Krishnakumari K, Rekha A, et al. Syndrome Evaluation System (SES) versus Blood Culture (BACTEC) in the diagnosis and management of neonatal sepsis–a randomized controlled trial. Indian J Pediatr 2016;83(5):370–379. DOI: 10.1007/s12098-015-1956-3.
  14. Kostoulas P, Nielsen SS, Branscum AJ, Johnson WO, Dendukuri N, Dhand NK, et al. STARD-BLCM: Standards for the Reporting of Diagnostic accuracy studies that use Bayesian Latent Class Models. Prev Vet Med 2017;138:37–47. DOI: 10.1016/j.prevetmed. 2017.01.006.
  15. Moitra SD. Skewness and the beta distribution. J Oper Res Soc 1990;41(10):953–961. DOI: 10.1057/jors.1990.147.
  16. Kalil AC, Gilbert DN, Winslow DL, Masur H, Klompas M. Infectious Diseases Society of America (IDSA) POSITION STATEMENT: why IDSA did not endorse the surviving sepsis campaign guidelines. Clin Infect Dis 2018;66(10):1631–1635. DOI: 10.1093/cid/cix997.
  17. Menchinelli G, Liotti FM, Fiori B, De Angelis G, D'Inzeo T, Giordano L, et al. In vitro evaluation of BACT/ALERT®VIRTUO®, BACT/ALERT 3D®, and BACTECTM FX automated blood culture systems for detection of microbial pathogens using simulated human blood samples. Front Microbiol 2019;10:221. DOI: 10.3389/fmicb.2019.00221.
  18. Lamy B, Dargère S, Arendrup MC, Parienti JJ, Tattevin P. How to optimize the use of blood cultures for the diagnosis of bloodstream infections? A state-of-the art. Front Microbiol 2016;7:1–13. DOI: 10.3389/fmicb.2016.00697.
  19. Vincent JL, Sakr Y, Singer M, Martin-Loeches I, Machado FR, Marshall JC, et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA 2020;323(15):1478–1487. DOI: 10.1001/jama.2020.2717.
  20. Chang S, Hsieh W, Liu T, Lee SH, Wang CH, Chou HC, et al. Multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis – a systemic review and meta-analysis. PLoS One 2013;8(5):e62323. DOI: 10.1371/journal.pone.0062323.
  21. Dark P, Blackwood B, Gates S, McAuley D, Perkins GD, McMullan R, et al. Accuracy of LightCycler® SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review and meta-analysis. Intensive Care Med 2015;41(1):21–33. DOI: 10.1007/s00134-014-3553-8.
  22. Berkvens D, Speybroeck N, Praet N, Adel A, Lesaffre E. Estimating disease prevalence in a Bayesian framework using probabilistic constraints. Epidemiology 2006;17(2):145–153. DOI: 10.1097/01.ede.0000198422.64801.8d.
  23. Blauwkamp TA, Thair S, Rosen MJ, Blair L, Lindner MS, Vilfan ID, et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol 2019;4(4): 663–674. DOI: 10.1038/s41564-018-0349-6.
  24. Lehmann LE, Hunfeld KP, Emrich T, Haberhausen G, Wissing H, Hoeft A, et al. A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples. Med Microbiol Immunol 2008;197(3):313–324. DOI: 10.1007/s00430-007-0063-0.
  25. Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 2016;62(10):e51–e77. DOI: 10.1093/cid/ciw118.
  26. Yui S, Bercades G, Muzslay M, Blackburn E, Ali S, Smyth D, et al. Assessment of a rapid diagnostic test to exclude bacteraemia and effect on clinical decision-making for antimicrobial therapy. Sci Rep 2020;10(1):1–7. DOI: 10.1038/s41598-020-60072-9.
  27. O'Dwyer MJ, Starczewska MH, Schrenzel J, Zacharowski K, Ecker DJ, Sampath R, et al. The detection of microbial DNA but not cultured bacteria is associated with increased mortality in patients with suspected sepsis—a prospective multi-centre European observational study. Clin Microbiol Infect 2017;23(3):208–e1. DOI: 10.1016/j.cmi.2016.11.010.
  28. Gill CJ, Sabin L, Schmid CH. Why clinicians are natural Bayesians. Br Med J 2005;330(7499):1080–1083. DOI: 10.1136/bmj.330.7499.1080.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.