Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 25 , ISSUE 3 ( March, 2021 ) > List of Articles

ORIGINAL RESEARCH

Concordance between the National Healthcare Safety Network (NHSN) Surveillance Criteria and Clinical Pulmonary Infection Score (CPIS) Criteria for Diagnosis of Ventilator-associated Pneumonia (VAP)

Anitha Gunalan, Sujatha Sistla, Apurba S Sastry, Ramanathan Venkateswaran

Keywords : Anesthesia and intensive care, Clinical pulmonary infection score, Ventilator-associated pneumonia, National Healthcare Safety Network

Citation Information : Gunalan A, Sistla S, Sastry AS, Venkateswaran R. Concordance between the National Healthcare Safety Network (NHSN) Surveillance Criteria and Clinical Pulmonary Infection Score (CPIS) Criteria for Diagnosis of Ventilator-associated Pneumonia (VAP). Indian J Crit Care Med 2021; 25 (3):296-298.

DOI: 10.5005/jp-journals-10071-23753

License: CC BY-NC 4.0

Published Online: 20-03-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Background: Ventilator-associated pneumonia (VAP) is one of the most common hospital-acquired infections among mechanically ventilated patients and the incidence rates are widely used as an index of quality of care given in an ICU. Since there is no gold standard method available to diagnose VAP, the incidence rate varies based on different criteria used for calculation. Therefore, we conducted a study to determine the concordance between the National Healthcare Safety Network (NHSN) surveillance criteria and clinical pulmonary infection score (CPIS) criteria for the diagnosis of VAP. Materials and methods: This was a prospective study that evaluated patients in the medical intensive care units (MICUs) of a tertiary care hospital, India, who were intubated for >48 hours between October 2018 and September 2019. All the patients (n = 273) were followed up daily and assessed using both CPIS and NHSN surveillance criteria for diagnosing VAP. Results: Of these 273 patients, 93 patients (34.1%) had VAP according to CPIS criteria as compared with 33 patients (12.1%) using the NHSN criteria. The corresponding rates of VAP were 39.59 vs 11.53 cases per 1,000 ventilator days, respectively. The agreement of the two sets of criteria was fairly good (kappa statistics, 0.42) Conclusion: The NHSN surveillance criteria have a lower sensitivity in detecting VAP cases and have to be modified to achieve better results.


  1. Hunter JD. Ventilator associated pneumonia. BMJ 2012;344:e3325. DOI: 10.1136/bmj.e3325.
  2. Charles MP, Kali A, Easow JM, Joseph NM, Ravishankar M, Srinivasan S, et al. Ventilator-associated pneumonia. Australas Med J 2014;7(8):334–344. DOI: 10.4066/AMJ.2014.2105.
  3. Magill SS, Klompas M, Balk R, Burns SM, Deutschman CS, Diekema D, et al. Developing a new, national approach to surveillance for ventilator-associated events. Crit Care Med 2013;41(11): 2467–2475. DOI: 10.1097/CCM.0b013e3182a262db.
  4. Klompas M. Complications of mechanical ventilation—the CDC's new surveillance paradigm. N Engl J Med 2013;368(16):1472–1475. DOI: 10.1056/NEJMp1300633.
  5. Miller PR, Johnson JC 3rd, Karchmer T, Hoth JJ, Meredith JW, Chang MC. National nosocomial infection surveillance system: from benchmark to bedside in trauma patients. J Trauma 2006;60(1): 98–103. DOI: 10.1097/01.ta.0000196379.74305.e4.
  6. Lilly CM, Landry KE, Sood RN, Dunnington CH, Ellison RT 3rd, Bagley PH, et al. Prevalence and test characteristics of national health safety network ventilator-associated events. Crit Care Med 2014;42(9): 2019–2028. DOI: 10.1097/CCM.0000000000000396.
  7. Mathai AS, Phillips A, Isaac R. Ventilator-associated pneumonia: a persistent healthcare problem in Indian Intensive Care Units! Lung India 2016;33(5):512–516. DOI: 10.4103/0970-2113.188971.
  8. Song X, Chen Y, Li X. Differences in incidence and outcome of ventilator-associated pneumonia in surgical and medical ICUs in a tertiary hospital in China. Clin Respir J 2014;8(3):262–268. DOI: 10.1111/crj.12036.
  9. Dallas J, Skrupky L, Abebe N, Boyle WA III, Kollef MH. Ventilator-associated tracheobronchitis in a mixed surgical and medical ICU population. Chest 2011;139(3):513–518. DOI: 10.1378/chest.10-1336.
  10. Joseph NM, Sistla S, Dutta TK, Badhe AS, Parija SC. Ventilator-associated pneumonia in a tertiary care hospital in India: incidence and risk factors. J Infect Dev Ctries 2009;3(10):771–777. DOI: 10.3855/jidc.396.
  11. Skrupky LP, McConnell K, Dallas J, Kollef MH. A comparison of ventilator-associated pneumonia rates as identified according to the National Healthcare Safety Network and American College of Chest Physicians criteria. Crit Care Med 2012;40(1):281–284. DOI: 10.1097/CCM.0b013e31822d7913.
  12. Waltrick R, Possamai DS, de Aguiar FP, Dadam M, de Souza Filho VJ, Ramos LR, et al. Comparison between a clinical diagnosis method and the surveillance technique of the Center for Disease Control and Prevention for identification of mechanical ventilator-associated pneumonia. Rev Bras Ter Intensiva 2015;27(3):260–265. DOI: 10.5935/0103-507X.20150047.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.