Descriptive Epidemiology of COVID-19 Deaths during the First Wave of Pandemic in India: A Single-center Experience
Prakash Tendulkar, Pragya Pandey, Ajeet S Bhadoria, Poorvi Kulshreshtha
Citation Information :
Tendulkar P, Pandey P, Bhadoria AS, Kulshreshtha P. Descriptive Epidemiology of COVID-19 Deaths during the First Wave of Pandemic in India: A Single-center Experience. Indian J Crit Care Med 2022; 26 (1):71-75.
Background: With the looming threat of recurrent waves of coronavirus disease-2019 (COVID-19) in the presence of mutated strains, it is of paramount importance to understand the demographic and clinical attributes of COVID-19 related mortalities in each pandemic wave. This could help policy makers, public health experts, and clinicians to better plan preventive and management strategies to curb COVID-19 related mortality.
Materials and methods: This was a hospital record-based, retrospective cross-sectional descriptive study, at a tertiary care hospital in Rishikesh, India. The study included all deceased patients between March 2020 and January 2021 (first wave) who had tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by reverse transcription polymerase chain reaction (RT-PCR) and were hospitalized. The study was done to describe demography, clinical presentation, laboratory parameters, treatment given, and associated complications of all COVID-19 deaths.
Result: Out of 424 mortalities, 298 (70.38%) were males and 126 (29.62%) were females. Mean age of patients was 55.85 ± 16.24 years, out of which 19.5% were less than 45 years old, 33.6% were 45–60 years old, and 41.8% were more than 60 years old. Comorbidity in the form of type II diabetes mellitus was present in 41.4% [95% CI (41.4–51.1)], hypertension in 39.8% [95% CI (35.1–44.6)], and coronary artery disease (CAD) in 15.2% [95% CI (11.8–18.8)]. At the time of presentation, shortness of breath was present in 73.6% [95% CI (69.1–77.7)], fever in 64.92% [95% CI (60.1–69.4)], and cough in 46.1%, [95% CI (41.1–50.8)]. Deranged laboratory parameters were lymphopenia in 90.2% [95% CI (86.8–92.7)], transaminitis in 59.7% [95% CI (54.8–64.3)], and hypercreatinemia in 37.7% [95% CI (33.1–42.5)]. Complications manifested were acute respiratory distress syndrome (ARDS) in 78.3% [95% CI (74–82.1)] and shock in 54.7% [95% CI (49.8–59.5)]. Median time duration between onset of symptom and hospital admission was 5 days (interquartile range (IQR) = 3–5 days) and median length of hospital stay was 9 days (IQR = 4–14 days).
Conclusion: During the first pandemic wave, COVID-19 related mortality was 2.37 times higher among males, 2.14 times in the age group >60 than <45 years. The most common associated comorbidities (>40%) were type II diabetes mellitus and hypertension. The most common associated symptoms (>60%) were shortness of breath and fever. Lymphopenia was seen in >90% cases while liver involvement in 60% and kidney in 38% cases. Median hospital stay was doubled the prehospital illness.
Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382(18): 1708–1720. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7092819/.
Thai PQ, Toan DTT, Dinh TS, Hoang TH Van, Luu NM, Xuan Hung L, et al. Factors associated with the duration of hospitalization among COVID-19 patients in Vietnam: a survival analysis. Epidemiol Infect 2020;148:e114. DOI: 10.1017/S0950268820001259. Available from: https://pubmed.ncbi.nlm.nih.gov/32517822/.
Wortham JM. Characteristics of persons who died with COVID-19– United States, February 12–May 18, 2020. MMWR Morb Mortal Wkly Rep 2020;69(28):923–929. DOI: 10.15585/mmwr.mm6928e1. Available from: https://www.cdc.gov/mmwr/volumes/69/wr/mm6928e1.htm.
Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020;323(18): 1775–1776. DOI: 10.1001/jama.2020.4683. Available from: https://jamanetwork.com/journals/jama/fullarticle/2763667.
Bienvenu LA, Noonan J, Wang X, Peter K. Higher mortality of COVID-19 in males: sex differences in immune response and cardiovascular comorbidities. Cardiovasc Res 2020;116(14):2197. DOI: 10.1093/cvr/cvaa284. Available from: https://academic.oup.com/cardiovascres/article/116/14/2197/5924554.
Kapoor M, Agrawal D, Ravi S, Roy A, Subramanian SV, Guleria R. Missing female patients: an observational analysis of sex ratio among outpatients in a referral tertiary care public hospital in India. BMJ Open 2019;9(8). DOI: 10.1136/bmjopen-2018-026850.
Moreno-Torres V, de la Fuente S, Mills P, Muñoz A, Muñez E, Ramos A, et al. Major determinants of death in patients hospitalized with COVID-19 during the first epidemic wave in Madrid, Spain. Medicine (Baltimore) 2021;100(16):e25634. DOI: 10.1097/MD.0000000000025634. Available from: https://journals.lww.com/md-journal/Fulltext/2021/04230/Major_determinants_of_death_in_patients.88.aspx.
Biswas M, Rahaman S, Biswas TK, Haque Z, Ibrahim B. Association of sex, age, and comorbidities with mortality in COVID-19 patients: a systematic review and meta-analysis. Intervirology 2021;64(1):36–47. DOI: 10.1159/000512592. Available from: https://www.karger.com/Article/FullText/512592.
Nandy K, Salunke A, Pathak SK, Pandey A, Doctor C, Puj K, et al. Coronavirus disease (COVID-19): A systematic review and meta-analysis to evaluate the impact of various comorbidities on serious events. Diabetes Metab Syndr Clin Res Rev 2020;14(5):1017–1025. DOI: 10.1016/j.dsx.2020.06.064. Available from: https://pubmed.ncbi.nlm.nih.gov/32634716/.
Badedi M, Darraj H, Alnami AQ, Makrami A, Mahfouz MS, Alhazmi K, et al. Epidemiological and clinical characteristics of deceased COVID-19 patients. Int J Gen Med 2021;14:3809–3819. DOI: 10.2147/IJGM.S320713. Available from: https://www.dovepress.com/epidemiological-and-clinical-characteristics-of-deceased-covid-19-pati-peer-reviewed-fulltext-article-IJGM.
Jain V, Yuan JM. Predictive symptoms and comorbidities for severe COVID-19 and intensive care unit admission: a systematic review and meta-analysis. Int J Public Health 2020;65(5):533–546. DOI: 10.1007/s00038-020-01390-7. Available from: https://pubmed.ncbi.nlm.nih.gov/32451563/.
Lee J, Park S-S, Kim TY, Lee D-G, Kim D-W. Lymphopenia as a biological predictor of outcomes in COVID-19 patients: a nationwide cohort study. Cancers (Basel) 2021;13(3):1–15. DOI: 10.3390/cancers13030471. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865511/.
Taneri PE, Gómez-Ochoa SA, Llanaj E, Raguindin PF, Rojas LZ, Roa-Díaz ZM, et al. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur J Epidemiol 2020;35(8): 763–773. DOI: 10.1007/s10654-020-00678-5. Available from: https://pubmed.ncbi.nlm.nih.gov/32816244/.
Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta 2020;506:145–148. DOI: 10.1016/j.cca.2020.03.022. Available from: https://pubmed.ncbi.nlm.nih.gov/32178975/.
Hansrivijit P, Gadhiya KP, Gangireddy M, Goldman JD. Risk factors, clinical characteristics, and prognosis of acute kidney injury in hospitalized COVID-19 patients: a retrospective cohort study. Medicines 2021;8(1):4. DOI: 10.3390/medicines8010004. Available from: https://pubmed.ncbi.nlm.nih.gov/33430296/.
Lin L, Wang X, Ren J, Sun Y, Yu R, Li K, et al. Risk factors and prognosis for COVID-19-induced acute kidney injury: a meta-analysis. BMJ Open 2020;10(11). DOI: 10.1136/bmjopen-2020-042573. Available from: https://pubmed.ncbi.nlm.nih.gov/33172950/.
Chan L, Chaudhary K, Saha A, Chauhan K, Vaid A, Zhao S, et al. AKI in hospitalized patients with COVID-19. J Am Soc Nephrol 2021;32(1):151–160. DOI: 10.1681/ASN.2020050615. Available from: https://jasn.asnjournals.org/content/32/1/151.
Zhong Z, Li H, Zhu J, Ji P, Li B, Pang J, et al. Clinical characteristics of 2,459 severe or critically ill COVID-19 patients: a meta-analysis. Medicine (Baltimore) 2021;100(5):e23781. DOI: 10.1097/MD.0000000000023781. Available from: https://pubmed.ncbi.nlm.nih.gov/33592834/.
Xie Y, Wang Z, Liao H, Marley G, Wu D, Tang W. Epidemiologic, clinical, and laboratory findings of the COVID-19 in the current pandemic: systematic review and meta-analysis. BMC Infect Dis 2020 201 2020;20(1):1–12. DOI: 10.1186/s12879-020-05371-2. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-020-05371-2.
Asirvatham ES, Sarman CJ, Saravanamurthy SP, Mahalingam P, Maduraipandian S, Lakshmanan J. Who is dying from COVID-19 and when? An analysis of fatalities in Tamil Nadu, India. Clin Epidemiol Glob Heal 2021;9:275. DOI: 10.1016/j.cegh.2020.09.010. Available from: https://pubmed.ncbi.nlm.nih.gov/33043168/.