Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 26 , ISSUE 12 ( December, 2022 ) > List of Articles

Original Article

Snake Venom-specific Phospholipase A2: A Diagnostic Marker for the Management of Snakebite Cases

Ram S Kaulgud, Tousif Hasan, Gulamnabi L Vanti, S Veeresh, Amruta P Uppar, Mahantesh M Kurjogi

Keywords : Antivenom, Enzyme, Snake bite, Venom, Venom-specific phospholipase A2

Citation Information : Kaulgud RS, Hasan T, Vanti GL, Veeresh S, Uppar AP, Kurjogi MM. Snake Venom-specific Phospholipase A2: A Diagnostic Marker for the Management of Snakebite Cases. Indian J Crit Care Med 2022; 26 (12):1259-1266.

DOI: 10.5005/jp-journals-10071-24362

License: CC BY-NC 4.0

Published Online: 08-12-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Background: Snake bites are a common cause of morbidity and mortality, especially in tropical countries. Snake bites in any community are managed based on the clinical features and intravenous administration of antisnake venom (ASV). The administration of ASV is either deficient or given in excess based on clinical decisions and whole blood clotting test results. The present study is designed to analyze the level of snake venom component in the blood of snake bite in association with the clinical features. Patients and methods: Blood samples were collected from the patients admitted to Karnataka Institute of Medical (KIMS) hospital with a history of snakebite considering the inclusion criteria. Serum was collected from the blood of snakebite patients before and after ASV and used to assess the level of venom-specific phospholipase A2 (PLA2) enzyme using the enzyme-linked immunosorbent assay (ELISA) method. Results: Quantitative ELISA results revealed that the snake venom-specific PLA2 in the victim's blood was in the range of 0.3–1.27 mg/mL before the administration of ASV. However, the concentration of PLA2 after 24 hours of ASV administration was decreased in most of the patients. Further, it was observed that envenomation complications were directly proportional to the amount of snake venom-specific PLA2 found in the blood of the snakebite patient. Conclusions: The study concludes that snake venom-specific PLA2 in the blood of snakebite patients could be used as a reliable venom marker, which helps in determination of appropriate ASV dosage in snakebite patients.


HTML PDF Share
  1. World Health Organization. Addressing the burden of snakebite envenoming. Available from http://apps.who.int/gb/ebwha/pdf_fles/EB142/B142_R4-en.pdf?ua=1 (2018). (Accessed on: 25 January 2008).
  2. Simpson ID, Norris RL. The global snakebite crisis–a public health issue misunderstood, not neglected. Wilderness Environ Med 2009; 20:43–56. DOI: 10.1580/08-WEME-CON-263.1.
  3. Chippaux JP. Snake-bites: Appraisal of the global situation. Bull World Health Organ 1998;76:515–524. PMCID: PMC2305789.
  4. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A. The global burden of snakebite: A literature analysis and modeling based on regional estimates of envenoming and deaths. PLoS Med 2008;5:218. DOI: 10.1371/journal.pmed.0050218.
  5. Longbottom J, Shearer FM, Devine M, Alcoba G, Chappuis F, Weiss DJ, et al. Vulnerability to snakebite envenoming: A global mapping of hotspots. Lancet 2018;392:673–684. DOI: 10.1016/S0140-6736(18)31224-8.
  6. Sachan D. The snake in the room: Snakebite's huge death toll demands a global response. BMJ 2018;361:k2449. Available from: https://doi.org/10.1136/bmj.k2449.
  7. World Health Organization. Prevalence of snakebite envenoming. Available from www.who.int/snakebites/epidemiology/en. Accessed on: 17 may 2021.
  8. Mohapatra B, Warrell DA, Suraweera W, Bhatia P, Dhingra N, Jotkar RM, et al. Snakebite mortality in India: A nationally representative mortality survey. PLoS Negl Trop Dis 2011;5:e1018. Available from: https://doi.org/10.1371/journal.pntd.0001018.
  9. Bawaskar HS. Snake bite poisoning: A neglected life-threatening occupational hazard. Indian J Crit Care Med 2014;18:123–124. DOI: 10.4103/0972-5229.128698.
  10. Simpson ID. A study of the current knowledge base in treating snake bite amongst doctors in the high-risk countries of India and Pakistan: Does snake bite treatment training reflect local requirements? Trans R Soc Trop Med Hyg 2008;102:1108–1114. DOI: 10.1016/j.trstmh.2008. 04.013.
  11. Ahsan H, Rahman M, Amin R, Chowdhury E. Status of snake bite at a rural community of Bangladesh: A survey. J Curr Adv Med Res 2018;4:17–22. DOI: 10.3329/jcamr.v4i1.36170.
  12. Subedi N, Paudel IS, Khadka A, Shrestha U, Mallik VB, Ankur KC. Knowledge of first aid methods and attitude about snake bite among medical students: a cross sectional observational study. J Occup Med Toxicol 2018;13: 26.
  13. Bhaumik S. Snakebite: A forgotten problem. BMJ 2013;346:f628. DOI:10.1136/bmj.f628.
  14. Alirol E, Sharma SK, Bawaskar HS, Kuch U, Chappuis F. Snake bite in South Asia: A review. PLoS Negl Trop Dis 2010;4:e603. DOI: 10.1371/journal.pntd.0000603. DOI: org/10.1186/s12995-018-0210-0.
  15. de Silva HA, Ryan NM, de Silva HJ. Adverse reactions to snake antivenom and their prevention and treatment. Br J Clin Pharmacol 2016;81:446–452. DOI: 10.1111/bcp.12739.
  16. Williams DJ, Gutiérrez JM, Calvete JJ, Wüster W, Ratanabanangkoon K, Paiva O, et al. Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. J Proteomics 2011;74:1735–1767. DOI: 10.1016/j.jprot.2011.05.027.
  17. Maduwage K, Silva A, O'Leary MA, Hodgson WC, Isbister GK, Efficacy of Indian polyvalent snake antivenoms against Sri Lankan snake venoms: lethality studies or clinically focused in vitro studies. Sci Rep 2016;6:26778. DOI: 10.1038/srep26778.
  18. Das RR, Sankar J, Dev N. High-dose versus low-dose antivenom in the treatment of poisonous snake bites: A systematic review. Indian J Crit Care Med 2015;19:340–349. DOI: 10.4103/0972-5229.158275.
  19. Durban J, Juarez P, Angulo Y, Lomonte B, Flores-Diaz M, Alape-Giron A. Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyro sequencing. BMC Genom 2011;12:259. DOI: 10.1186/1471-2164-12-259.
  20. Goncalves-Machado L, Pla D, Sanz L, Jorge RJB, Leitao-De-Araujo M, Alves MLM, et al. Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest. J Proteomics 2016;135:73–89. PMID: 25968638.
  21. Gubensek F, Sket D, Turk V, Lebez D. Fractionation of Vipera ammodytes venom and seasonal variation of its composition. Toxicon 1974;12: 167–171. DOI: 10.1016/0041-0101(74)90241-4.
  22. Barlow A, Pook CE, Harrison RA, Wuster W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc Biol Sci 2009;276:2443–2449. DOI: 10.1098/rspb.2009.0048.
  23. Halesha BR, Harshavardhan Lokesh AJ, Channaveerappa PK, Venkatesh KB. A Study on the Clinico-Epidemiological Profile and the Outcome of Snake Bite Victims in a Tertiary Care Centre in Southern India. J Clin Diagn Res 2013;7:122–126. DOI: 10.7860/JCDR/2012/4842.2685.
  24. Bhalla G, Mhaskar D, Agarwal A. A study of clinical profile of snake bite at a tertiary care center. Toxicol int 2014;21:203–208. DOI: 10.4103/0971-6580.139811.
  25. Ghosh R, Mana K, Gantait K, Sarkhel S. A retrospective study of clinico-epidemiological profile of snakebite related deaths at a Tertiary care hospital in Midnapore, West Bengal, India. Toxicol Rep 2018;5:1–5. DOI: 10.1016/j.toxrep.2017.11.008.
  26. Chaudhary MK, Gupta LK, Chand LB, Chaudhary R, Ranpal S. A prospective study on clinico-epidemiological profile and outcome in management of poisonous snake bite. Int J Basic Clin Pharmacol 2020;9:695–700. Available from: https://dx.doi.org/10.18203/2319-2003.ijbcp20201742.
  27. Maduwage KP, Gawarammana IB, Gutiérrez JM, Kottege C, Dayaratne R, Premawardena NP. Enzyme immunoassays for detection and quantification of venoms of Sri Lankan snakes: Application in the clinical setting. PLoS Negl Trop Dis 2020;14:e0008668. DOI: 10.1371/journal.pntd.0008668.
  28. Alcoba G, Potet J, Vatrinet R, Singh S, Nanclares C, Kruse A, et al. Snakebite envenoming in humanitarian crises and migration: A scoping review and the Médecins Sans Frontières experience. Toxicon: X 2022;13:100089. Available from: https://doi.org/10.1016/j.toxcx.2021.100089.
  29. Kumar V, Maheshwari R, Verma HK.. Toxicity and symptomatic identification of species involved in snakebites in the Indian subcontinent. J Venom Anim Toxins Incl Trop Dis 2006;12:3–18. Available from: https://doi.org/10.1590/S1678-91992006000100002.
  30. Williams HF, Layfield HJ, Vallance T, Patel K, Bicknell AB, Trim SA, et al. The urgent need to develop novel strategies for the diagnosis and treatment of snakebites. Toxins 2019;11(6):363. DOI: 10.3390/toxins11060363.
  31. Landon J, Smith DS. Merits of sheep antisera for antivenom manufacture. J Toxicol Toxin Rev 2003;22:15–22. Available from: https://doi.org/10.1081/TXR-120019017.
  32. Bermudez-Mendez E, Fuglsang-Madsen A, Fons S, Lomonte B, Gutierrez JM, Laustsen AH. Innovative immunization strategies for antivenom development. Toxins 2018;10:452. DOI: 10.3390/toxins10110452.
  33. Tasoulis T, Geoffrey K Isbister. A review and database of snake venom proteomes. Toxins 2017;9:290. DOI: 10.3390/toxins9090290.
  34. O'Leary MA, Maduwage K, Isbister GK. Detection of venom after antivenom administration is largely due to bound venom. Toxicon 2015:93. DOI: 10.1016/j.toxicon.2014.11.221.
  35. Maduwage K, O'Leary MA, Isbister GK. Diagnosis of snake envenomation using a simple phospholipase A2 assay. Sci Rep 2014;4:4827. DOI: 10.1038/srep04827.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.