Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 26 , ISSUE 3 ( March, 2022 ) > List of Articles

Original Article

Evaluation of Abdominal Expiratory Muscle Thickness Pattern, Diaphragmatic Excursion, and Lung Ultrasound Score in Critically Ill Patients and Their Association with Weaning Patterns: A Prospective Observational Study

Sagar S Maddani

Keywords : Diaphragmatic excursion, Expiratory abdominal muscles, Expiratory muscle thickness pattern, External oblique, Internal oblique, Rectus abdominis, Transversus abdominis

Citation Information : Maddani SS. Evaluation of Abdominal Expiratory Muscle Thickness Pattern, Diaphragmatic Excursion, and Lung Ultrasound Score in Critically Ill Patients and Their Association with Weaning Patterns: A Prospective Observational Study. Indian J Crit Care Med 2022; 26 (3):307-313.

DOI: 10.5005/jp-journals-10071-24125

License: CC BY-NC 4.0

Published Online: 30-03-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Introduction: The expiratory muscles are an indispensable component of respiratory function in critically ill patients, yet is often overlooked. We evaluated the association of abdominal expiratory muscles thickness pattern with weaning. Materials and methods: This was a single-center, prospective observational study done on 81 adult mechanically ventilated patients who underwent the weaning process. Results: Sixteen patients had simple weaning and 65 patients had either difficult or prolonged weaning. The mean and standard deviation (SD) of the thickness of expiratory abdominal muscles—rectus abdominis (RA), internal oblique (IO), external oblique (EO), and transversus abdominis (TA) were significantly more in patients with simple weaning than those with difficult or prolonged weaning. The receiver operating curve (ROC) of expiratory muscles showed RA, IO, EO, TA cut-offs 0.638, 0.492, 0.315, and 0.253 cm, respectively, to predict simple weaning. The pattern of expiratory muscle thickness RA > IO > EO > TA was maintained in both simple and difficult/prolonged weaning groups (p = 0.362). The ROC of diaphragmatic excursion (DE) for predicting simple weaning had cut-off 1.79 cm. The lung ultrasound score (LUS) was 5.75 ± 3.32 in the simple weaning group, compared to 9.71 ± 5.18 in the difficult/prolonged weaning group (p = 0.005). Conclusion: Abdominal expiratory muscles were significantly thicker in patients with simple weaning compared to those with difficult or prolonged weaning. The pattern of expiratory muscle thickness followed the pattern of RA > IO > EO > TA in both simple weaning and difficult or prolonged weaning groups. DE >1.79 cm predicted simple weaning and LUS was significantly lesser in patients with simple weaning (CTRI/2020/11/028895).


HTML PDF Share
  1. Shi ZH, Jonkman A, de Vries H, Jansen D, Ottenheijm C, Girbes A, et al. Expiratory muscle dysfunction in critically ill patients: towards improved understanding. Intensive Care Med 2019;45(8):1061–1071. DOI: 10.1007/s00134-019-05664-4.
  2. Dres M, Goligher EC, Heunks LMA, Brochard LJ. Critical illness-associated diaphragm weakness. Intensive Care Med 2017;43(10):1441–1452. DOI: 10.1007/s00134-017-4928-4.
  3. Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D, et al. Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med 2015;192(9):1080–1088. DOI: 10.1164/rccm.201503-0620OC.
  4. Aliverti A, Cala SJ, Duranti R, Ferrigno G, Kenyon CM, Pedotti A, et al. Human respiratory muscle actions and control during exercise. J Appl Physiol (1985) 1997;83(4):1256–1269. DOI: 10.1152/jappl.1997.83.4.1256.
  5. Suzuki J, Tanaka R, Yan S, Chen R, Macklem PT, Kayser B. Assessment of abdominal muscle contractility, strength, and fatigue. Am J Respir Crit Care Med 1999;159:1052–1060. DOI: 10.1164/ajrccm.159.4.9803025.
  6. Bouhemad B, Mongodi S, Via G, Rouquette I. Ultrasound for “lung monitoring” of ventilated patients. Anesthesiology 2015;122(2):437–447. DOI: 10.1097/ALN.0000000000000558.
  7. Samanta S, Singh RK, Baronia AK, Poddar B, Azim A, Gurjar M. Diaphragm thickening fraction to predict weaning-a prospective exploratory study. J Intensive Care 2017;5:62. DOI: 10.1186/s40560-017-0258-4.
  8. Navalesi P, Frigerio P, Patzlaff A, Häußermann S, Henseke P, Kubitschek M. Prolonged weaning: from the intensive care unit to home. Rev Port Pneumol 2014;20(5):264–272. DOI: 10.1016/j.rppneu.2014.04.006.
  9. Heunks LM, van der Hoeven JG. Clinical review: the ABC of weaning failure--a structured approach. Crit Care 2010;14(6):245. DOI: 10.1186/cc9296.
  10. Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J 2007;29(5):1033–1056. DOI: 10.1183/09031936.00010206.
  11. Arora NS, Gal TJ. Cough dynamics during progressive expiratory muscle weakness in healthy curarized subjects. J Appl Physiol Respir Environ Exerc Physiol 1981;51(2):494–498. DOI: 10.1152/jappl.1981.51.2.494.
  12. Kravitz RM. Airway clearance in Duchenne muscular dystrophy. Pediatrics 2009;123(Suppl. 4):S231–S235. DOI: 10.1542/peds.2008-2952G.
  13. Rhee MH, Lee DR, Kim LJ. Differences in abdominal muscle activation during coughing between smokers and nonsmokers. J Phys Ther Sci 2016;28(4):1147–1149. DOI: 10.1589/jpts.28.1147.
  14. Su WL, Chen YH, Chen CW, Yang SH, Su CL, Perng WC, et al. Involuntary cough strength and extubation outcomes for patients in an ICU. Chest 2010;137(4):777–782. DOI: 10.1378/chest.07-2808.
  15. Kutchak FM, Debesaitys AM, Rieder Mde M, Meneguzzi C, Skueresky AS, Forgiarini Junior LA, et al. Reflex cough PEF as a predictor of successful extubation in neurological patients. J Bras Pneumol 2015;41(1):358–364. DOI: 10.1590/S1806-37132015000004453.
  16. Savi A, Teixeira C, Silva JM, Borges LG, Pereira PA, Pinto KB, et al. Gaucho Weaning Study G. Weaning predictors do not predict extubation failure in simple-to-wean patients. J Crit Care 2012;27(2):221–228. DOI: 10.1016/j.jcrc.2011.07.079.
  17. Parthasarathy S, Jubran A, Tobin MJ. Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med 1998;158:1471–1478. DOI: 10.1164/ajrccm.158.5.9802014.
  18. Gobert F, Yonis H, Tapponnier R, Fernandez R, Labaune MA, Burle JF, et al. Predicting extubation outcome by cough peak flow measured using a built-in ventilator flow meter. Respir Care 2017;62(12):1505–1519. DOI: 10.4187/respcare.05460.
  19. Misuri G, Colagrande S, Gorini M, Iandelli I, Mancini M, Duranti R, et al. In vivo ultrasound assessment of respiratory function of abdominal muscles in normal subjects. Eur Respir J 1997;10(12):2861–2867. DOI: 10.1183/09031936.97.10122861.
  20. McCool FD, Conomos P, Benditt JO, Cohn D, Sherman CB, Hoppin Jr FG. Maximal inspiratory pressures and dimensions of the diaphragm. Am J Respir Crit Care Med 1997;155(4):1329–1334. DOI: 10.1164/ajrccm.155.4.9105075.
  21. Ishida H, Kobara K, Osaka H, Suehiro T, Ito T, Kurozumi C, et al. Correlation between peak expiratory flow and abdominal muscle thickness. J Phys Ther Sci 2014;26(11):1791–1793. DOI: 10.1589/jpts.26.1791.
  22. Tahan N, Khademi-Kalantari K, Mohseni-Bandpei MA, Mikaili S, Baghban AA, Jaberzadeh S. Measurement of superficial and deep abdominal muscle thickness: an ultrasonography study. J Physiol Anthropol 2016;35(1):17. DOI: 10.1186/s40101-016-0106-6.
  23. Schreiber AF, Bertoni M, Coiffard B, Fard S, Wong J, Reid WD, et al. Abdominal muscle use during spontaneous breathing and cough in patients who are mechanically ventilated: a bi-center ultrasound study. Chest 2021:S0012-3692(21)01084-9. DOI: 10.1016/j.chest.2021.05.053.
  24. McCaughey EJ, Jonkman AH, Boswell-Ruys CL, McBain RA, Bye EA, Hudson AL, et al. Abdominal functional electrical stimulation to assist ventilator weaning in critical illness: a double-blinded, randomised, sham-controlled pilot study. Crit Care 2019;23(1):261. DOI: 10.1186/s13054-019-2544-0.
  25. Dall'Acqua AM, Sachetti A, Santos LJ, Lemos FA, Bianchi T, Naue WS, et al. Use of neuromuscular electrical stimulation to preserve the thickness of the abdominal and chest muscles of critically ill patients: a randomized clinical trial. J Rehabil Med 2017;49(1):40–48. DOI: 10.2340/16501977-2168.
  26. Mowafy SMS, Abdelgalel EF. Diaphragmatic rapid shallow breathing index for predicting weaning outcome from mechanical ventilation: comparison with traditional rapid shallow breathing index. Egypt J Anaesth 2019;35(1):9–17. DOI: 10.1016/j.egja.2018.10.003.
  27. Banerjee A, Mehrotra G. Comparison of lung ultrasound-based weaning indices with rapid shallow breathing index: are they helpful? Indian J Crit Care Med 2018;22(6):435–440. DOI: 10.4103/ijccm.IJCCM_331_17.
  28. DiNino E, Gartman EJ, Sethi JM, McCool FD. Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax 2014;69(5):423–427. DOI: 10.1136/thoraxjnl-2013-204111.
  29. Dres M, Demoule A. Diaphragm dysfunction during weaning from mechanical ventilation: an underestimated phenomenon with clinical implications. Crit Care 2018;22(1):73. DOI: 10.1186/s13054-018-1992-2.
  30. Vivier E, Mekontso Dessap A, Dimassi S, Vargas F, Lyazidi A, Thille AW, et al. Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensive Care Med 2012;38(5):796–803. DOI: 10.1007/s00134-012-2547-7.
  31. Soliman SB, Ragab F, Soliman RA, Gaber A, Kamal A. Chest ultrasound in predication of weaning failure. Open Access Maced J Med Sci 2019;7(7):1143–1147. DOI: 10.3889/oamjms.2019.277.
  32. Seeley EJ. A dry lung is a happy lung: more supporting evidence. J Thorac Cardiovasc Surg 2015;149(1):321–322. DOI: 10.1016/j.jtcvs.2014.09.021.
  33. Grosu HB, Lee YI, Lee J, Eden E, Eikermann M, Rose KM. Diaphragm muscle thinning in patients who are mechanically ventilated. Chest 2012;142(6):1455–1460. DOI: 10.1378/chest.11-1638.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.