Indian Journal of Critical Care Medicine

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 26 , ISSUE S2 ( October, 2022 ) > List of Articles


ISCCM Guidelines on Acute Kidney Injury and Renal Replacement Therapy

Kowdle Chandrasekhar Prakash, Niraj Tyagi, Raymond D Savio, Balasubramanian Subbarayan, Nitin Arora, Ranajit Chatterjee, Jose Chacko, Ruchira W Khasne, Rajasekara M Chakravarthi, Nita George, Ahsan Ahmed, Yash Javeri, Akshay K Chhallani, Reshu G Khanikar, Ahsina J Lopa, Dhruva Chaudhry, Arindam Kar, Subhal B Dixit, Palepu Gopal

Keywords : Acute kidney injury, Biomarkers, Continuous renal replacement therapy (CRRT), ECMO, Guidelines, Renal replacement therapy

Citation Information :

DOI: 10.5005/jp-journals-10071-24109

License: CC BY-NC 4.0

Published Online: 31-10-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Acute kidney injury (AKI) is a complex syndrome with a high incidence and considerable morbidity in critically ill patients. Renal replacement therapy (RRT) remains the mainstay of treatment for AKI. There are at present multiple disparities in uniform definition, diagnosis, and prevention of AKI and timing of initiation, mode, optimal dose, and discontinuation of RRT that need to be addressed. The Indian Society of Critical Care Medicine (ISCCM) AKI and RRT guidelines aim to address the clinical issues pertaining to AKI and practices to be followed for RRT, which will aid the clinicians in their day-to-day management of ICU patients with AKI.

PDF Share
  1. Musso CG, Terrasa S, Ciocchini M, Gonzalez-Torres H, Aroca-Martinez G. Looking for a better definition and diagnostic strategy for acute kidney injury: a new proposal. Arch Argent Pediatr 2019;117(1):4–5. DOI: 10.5546/aap.2019.eng.4.
  2. Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, et al. Acute Kidney Injury Advisory Group of the American Society of Nephrology: world incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol 2013;8(9):1482–1493. DOI: 10.2215/CJN.00710113.
  3. Guyatt GH, Oxman AD, Kunz R, Falck-Ytter Y, Vist GE, Liberati A, et al. Going from evidence to recommendations. BMJ (Clinical research ed) 2008;336(7652):1049–1051. DOI: 10.1136/bmj.39493.646875.AE.
  4. Levey AS, Eckardt K-U, Dorman NM, Cheung M, Jadoul M, Winkelmayer WC, et al. Nomenclature for kidney function and disease: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney International 2020;97(6): 1117–1129. DOI: 10.1016/j.kint.2020.02.010.
  5. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure: definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the Acute Dialysis Quality Initiative group. Crit Care 2004;8(4):R204–R212. DOI: 10.1186/cc2872.
  6. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007;11(2):R31. DOI: 10.1186/cc5713.
  7. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 2005;16(11):3365–3370. DOI: 10.1681/ASN.2004090740.
  8. Kidney disease: Improving Global Outcomes (KDIGO) acute kidney injury workgroup. KIDGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2012;2(Suppl. 1):1–138. DOI: 10.1038/kisup.2012.1.
  9. Luo X, Jiang L, Du B, Wen Y, Wang M, Xi X. Beijing Acute Kidney Injury Trial (BAKIT) workgroup. A comparison of different diagnostic criteria of acute kidney injury in critically ill patients. Crit Care 2014;18(4):R144. DOI: 10.1186/cc13977.
  10. Xiong J, Tang X, Hu Z, Nie L, Wang Y, Zhao J. The RIFLE versus AKIN classification for incidence and mortality of acute kidney injury in critically ill patients: a meta-analysis. Sci Rep 2015;5:17917. DOI: 10.1038/srep17917.
  11. Zeng X, McMahon GM, Brunelli SM, Bates DW, Waikar SS. Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals. Clin J Am Soc Nephrol 2014;9(1):12–20. DOI: 10.2215/CJN.02730313.
  12. Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 2015;41(8):1411–1423. DOI: 10.1007/s00134-015-3934-7.
  13. Hsu CY, Chertow GM, McCulloch CE, Fan D, Ordoñez JD, Go AS. Nonrecovery of kidney function and death after acute on chronic renal failure. Clin J Am Soc Nephrol 2009;4(5):891–898. PMID: 19406959.
  14. Lo LJ, Go AS, Chertow GM, McCulloch CE, Fan D, Ordoñez JD, et al. Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int 2009;76(8):893–899. PMID: 19641480.
  15. Liangos O, Wald R, O'Bell JW, Price L, Pereira BJ, Jaber BL, et al. Epidemiology and outcomes of acute renal failure in hospitalized patients: a national survey. Clin J Am Soc Nephrol 2006;1(1):43–51. DOI: 10.2215/CJN.00220605.
  16. Wu V-C, Wu C-H, Huang T-M, Wang CY, Lai CF, Shiao CC, et al. NSARF Group. Long-term risk of coronary events after AKI. J Am Soc Nephrol 2014;25(3):595–605. DOI: 10.1681/ASN.2013060610.
  17. Aglae C, Muller L, Reboul P, Cariou S, Saber Davide B, Trusson R, et al. Heterogeneity of cause, care, and prognosis in severe acute kidney injury in hospitalized patients: a prospective observational study. Can J Kidney Health Dis 2019;4:6:2054358119892174. DOI: 10.1177/2054358119892174.
  18. Liu J, Xie H, Ye Z, Li F, Wang L. Rates, predictors, and mortality of sepsis-associated acute kidney injury: a systematic review and meta-analysis. BMC Nephrol 2020;21:318. DOI: 10.1186/s12882-020-01974-8.
  19. Hansrivijit P, Yarlagadda K, Cheungpasitporn W, Thongprayoon C, Ghahramani N. Hypoalbuminemia is associated with increased risk of acute kidney injury in hospitalized patients: a meta-analysis. J Crit Care 2021;61:96–102. DOI: 10.1016/j.jcrc.2020.10.013.
  20. Low S, Vathsala A, Murali TM, Pang L, MacLaren G, Ng WY, et al. Electronic health records accurately predict RRT in acute kidney injury. BMC Nephrol 2019;20:32. DOI: 10.1186/s12882-019-1206-4.
  21. Wang Y, Liu K, Xie X, Song B. Contrast-associated acute kidney injury: an update of risk factors, risk factor scores, and preventive measures. Clin Imaging 2021;69:354–362. DOI: 10.1016/j.clinimag.2020.10.009.
  22. Chen B, Zhao J, Zhang Z, Li G, Jiang H, Huang Y, Li X. Clinical characteristics and risk factors for severe burns complicated by early acute kidney injury. Burns 2020;46:1100–1106. DOI: 10.1016/j.burns.2019.11.018.
  23. Sun LY, Wijeysundera DN, Tait GA, Beattie WS. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology 2015;123(3):515–523. DOI: 10.1097/ALN.0000000000000765.
  24. Amini S, Najafi MN, Karrari SP, Mashhadi ME, Mirzaei S, Tashnizi MA, et al. Risk factors and outcome of acute kidney injury after isolated CABG surgery: a prospective cohort study. Braz J Cardiovasc Surg 2019;34(1):70–75. DOI: 10.21470/1678-9741-2017-0209.
  25. Jawitz OK, Stebbins AS, Raman V, Alhanti B, van Diepen S, Heringlake M, et al. Association between levosimendan, postoperative AKI, and mortality in cardiac surgery: insights from the LEVO-CTS trial. Am Heart J 2021;231:18–24. DOI: 10.1016/j.ahj.2020.10.066.
  26. Kato TS, Machida Y, Kuwaki K, Yamamoto T, Amano A. Factors associated with postoperative requirement of renal replacement therapy following off-pump coronary bypass surgery. Heart Vessels 2017;32(2):134–142. DOI: 10.1007/s00380-016-0855-5.
  27. Panagiotou A, Garzotto F, Gramaticopolo S, Piccinni P, Trentin C, Cruz DN, et al. Continuous real-time urine output monitoring for early detection of acute kidney injury. Contrib Nephrol 2011;171:194–200. DOI: 10.1159/000327323.
  28. Dalfino L, Tullo L, Donadio I, Malcangi V, Brienza N. Intra-abdominal hypertension and acute renal failure in critically ill patients. Intensive Care Med 2008;34(4):707–713. DOI: 10.1007/s00134-007-0969-4.
  29. Al-Jaghbeer M, Dealmeida D, Bilderback A, Ambrosino R, Kellum JA. Clinical decision support for in-hospital AKI. J Am Soc Nephrol 2018;29(2):654–660. DOI: 10.1681/ASN.2017070765.
  30. Lachance P, Villeneuve PM, Rewa OG, Wilson FP, Selby NM, Featherstone RM, et al. Association between e-alert implementation for detection of acute kidney injury and outcomes: a systematic review. Nephrol Dial Transplant 2017;32(2):265–272. DOI: 10.1093/ndt/gfw424.
  31. Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high-risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med 2017;43(11):1551–1561. DOI: 10.1007/s00134-016-4670-3.
  32. Selby NM, Casula A, Lamming L, Stoves J, Samarasinghe Y, Lewington AJ et al. An organizational-level program of intervention for AKI: a pragmatic stepped wedge cluster randomized trial. J Am Soc Nephrol 2019;30(3):505–515. DOI: 10.1681/ASN.2018090886.
  33. Redfors B, Bragadottir G, Sellgren J, Swärd K, Ricksten SE. Effects of norepinephrine on renal perfusion, filtration, and oxygenation in vasodilatory shock and acute kidney injury. Intensive Care Med 2011;37(1):60–67. DOI: 10.1007/s00134-010-2057-4.
  34. Badin J, Boulain T, Ehrmann S, Skarzynski M, Bretagnol A, Buret J, et al. Relation between mean arterial pressure and renal function in the early phase of shock: a prospective, explorative cohort study. Crit Care 2011;15(3):R135. DOI: 10.1186/cc10253.
  35. Dünser MW, Takala J, Ulmer H, Mayr VD, Luckner G, Jochberger S, et al. Arterial blood pressure during early sepsis and outcome. Intensive Care Med 2009;35(7):1225–1233. DOI: 10.1007/s00134-009-1427-2.
  36. Wong BT, Chan MJ, Glassford NJ, Mårtensson J, Bion V, Chai SY, et al. Mean arterial pressure and mean perfusion pressure deficit in septic acute kidney injury. J Crit Care 2015;30(5):975–981. DOI: 10.1016/j.jcrc.2015.05.003.
  37. Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, et al. SEPSISPAM Investigators. High versus low blood-pressure target in patients with septic shock. N Engl J Med 2014;370:1583–1593. DOI: 10.1056/NEJMoa1312173.
  38. Hjortrup PB, Haase N, Bundgaard H, Thomsen SL, Winding R, Pettilä V, et al. CLASSIC Trial Group. Scandinavian Critical Care Trials Group. Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomized, parallel-group, multicentre feasibility trial. Intensive Care Med 2016;42(11):1695–1705. DOI: 10.1007/s00134-016-4500-7.
  39. Mao XQ, Lou BH, Wu DJ. [Efficacy of Lactated Ringer's versus Normal Saline in Treating Patients with Septic Shock]. Zhongguo Yi XueKeXue Yuan Xue Bao 2018;40(3):349–355. Chinese. DOI: 10.3881/j.issn.1000-503X.2018.03.009.
  40. Lewis SR, Pritchard MW, Evans DJ, Butler AR, Alderson P, Smith AF, et al. Colloids versus crystalloids for fluid resuscitation in critically ill people. Cochrane Database Syst Rev 2018;8:CD000567. DOI: 10.1002/14651858.CD000567.pub7.
  41. Bayer O, Schwarzkopf D, Doenst T, Cook D, Kabisch B, Schelenz C, et al. Perioperative fluid therapy with tetrastarch and gelatin in cardiac surgery–a prospective sequential analysis. Crit Care Med 2013;41:2532–2542. DOI: 10.1097/CCM.0b013e3182978fb6.
  42. SAFE Study Investigators. Australian and New Zealand Intensive Care Society Clinical Trials Group. Australian Red Cross Blood Service. George Institute for International Health, Myburgh J, Cooper DJ, Finfer S, Bellomo R, Norton R, Bishop N, et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med 2007;357(9):874–884. DOI: 10.1056/NEJMoa067514.
  43. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. Journal of the American Medical Association 2012;308:1566–1572. DOI: 10.1001/jama.2012.13356.
  44. Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, et al. SPLIT Investigators. ANZICS CTG. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. Journal of the American Medical Association 2015;314(16):1701–1710. DOI: 10.1001/jama.2015.12334 [Erratum in: JAMA. 2015 Dec 15;314(23):2570].
  45. Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, et al. SMART Investigators and the Pragmatic Critical Care Research Group. Balanced crystalloids versus saline in critically ill adults. N Engl J Med 2018;378(9):829–839. DOI: 10.1056/NEJMoa1711584.
  46. Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw AD. Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg 2015;102(1):24–36. DOI: 10.1002/bjs.9651.
  47. Krzych ŁJ, Czempik PF. Impact of furosemide on mortality and the requirement for renal replacement therapy in acute kidney injury: a systematic review and meta-analysis of randomized trials. Ann Intensive Care 2019;9(1):85. DOI: 10.1186/s13613-019-0557-0.
  48. Chen JJ, Chang CH, Huang YT, Kuo G. Furosemide stress test as a predictive marker of acute kidney injury progression or renal replacement therapy: a systemic review and meta-analysis. Crit Care 2020;24(1):202. DOI: 10.1186/s13054-020-02912-8.
  49. Ho KM, Power BM. Benefits and risks of furosemide in acute kidney injury. Anesthesia 2010;65(3):283–293. DOI: 10.1111/j.1365-2044.2009.06228.x.
  50. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. SOAP II Investigators. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 2010;362:779–789. DOI: 10.1056/NEJMoa0907118.
  51. Gordon AC, Russell JA, Walley KR, Singer J, Ayers D, Storms MM, et al. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Med 2010;36(1):83–91. DOI: 10.1007/s00134-009-1687-x.
  52. Friedrich JO, Adhikari N, Herridge MS, Beyene J. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med 2005;142(7):510–524. DOI: 10.7326/0003-4819-142-7-200504050-00010.
  53. Arora V, Maiwall R, Rajan V, Jindal A, MuralikrishnaShasthry S, Kumar G, et al. Terlipressin is superior to noradrenaline in the management of acute kidney injury in acute on chronic liver failure. Hepatology 2020;71(2):600–610. DOI: 10.1002/hep.30208.
  54. Thomas G, Rojas MC, Epstein SK, Balk EM, Liangos O, Jaber BL. Insulin therapy and acute kidney injury in critically ill patients a systematic review. Nephrol Dial Transplant 2007;22(10):2849–2855. DOI: 10.1093/ndt/gfm401.
  55. Acute kidney injury: prevention, detection, and management. NICE guideline. 2019. Available from:
  56. Bell S, Rennie T, Marwick CA, Davey P. Effects of perioperative nonsteroidal anti-inflammatory drugs on postoperative kidney function for adults with normal kidney function. Cochrane Database Syst Rev 2018;11:CD011274. DOI: 10.1002/14651858.CD011274.pub2.
  57. Chien HT, Lin YC, Sheu CC, Hsieh KP, Chang JS. Is colistin-associated acute kidney injury clinically important in adults? A systematic review and meta-analysis. Int J Antimicrob Agents 2020;55(3):105889. DOI: 10.1016/j.ijantimicag.2020.105889.
  58. Woolen SA, Shankar PR, Gagnier JJ, MacEachern MP, Singer L, Davenport MS. Risk of nephrogenic systemic fibrosis in patients with stage 4 or 5 chronic kidney disease receiving a group II gadolinium-based contrast agent: a systematic review and meta-analysis. JAMA Intern Med 2020;180(2):223–230. DOI: 10.1001/jamainternmed.2019.5284.
  59. Miyamoto Y, Iwagami M, Aso S, Yasunaga H, Matsui H, Fushimi K, et al. Association between intravenous contrast media exposure and non-recovery from dialysis-requiring septic acute kidney injury: a nationwide observational study. Intensive Care Med 2019;45(11): 1570–1579. DOI: 10.1007/s00134-019-05755-2.
  60. Cai Q, Jing R, Zhang W, Tang Y, Li X, Liu T. Hydration strategies for preventing contrast-induced acute kidney injury: a systematic review and Bayesian network meta-analysis. J IntervCardiol 2020;2020:7292675. DOI: 10.1155/2020/7292675.
  61. Nijssen EC, Rennenberg RJ, Nelemans PJ, Essers BA, Janssen MM, Vermeeren MA, et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomized, phase 3, controlled, open-label, non-inferiority trial. Lancet 2017;389(10076):1312–1322. DOI: 10.1016/S0140-6736(17)30057-0.
  62. Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, et al. PRESERVE Trial Group. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med 2018;378:603–614. DOI: 10.1056/NEJMoa1710933.
  63. Guo Z, Liu J, Lei L, Xue Y, Liu L, Huang H, et al. Effect of N-acetylcysteine on prevention of contrast-associated acute kidney injury in patients with STEMI undergoing primary percutaneous coronary intervention: a systematic review and meta-analysis of randomized controlled trials. BMJ Open 2020;10(10):e039009. DOI: 10.1136/bmjopen-2020-039009.
  64. Cho A, Lee YK, Sohn SY. Beneficial effect of statin on preventing contrast-induced acute kidney injury in patients with renal insufficiency: a meta-analysis. Medicine (Baltimore) 2020;99(10):e19473. DOI: 10.1097/MD.0000000000019473.
  65. Wang Y, Zhu S, DU R, Zhou J, Chen Y, Zhang Q. Statin initiation and renal outcomes following isolated coronary artery bypass grafting: a meta-analysis. J Cardiovasc Surg (Torino) 2018;59(2):282–290. DOI: 10.23736/S0021-9509.17.10074-1.
  66. Ouyang H, Zhou M, Xu J, Fang C, Zhong Z, Zhou Y, et al. Effect of remote ischemic preconditioning on patients undergoing elective major vascular surgery: a systematic review and meta-analysis. Ann Vasc Surg 2020;62:452–462. DOI: 10.1016/j.avsg.2019.05.035.
  67. Winther-Olesen M, Møller MH, Johansen KK, Aasvang EK. Effects of post-operative furosemide in adult surgical patients: a systematic review and meta-analysis of randomized clinical trials. Acta Anaesthesiol Scand 2020;64(3):282–291. DOI: 10.1111/aas.13513.
  68. Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit Care 2016;20(1):299. DOI: 10.1186/s13054-016-1478-z.
  69. Cherry RA, Eachempati SR, Hydo L, Barie PS. Accuracy of short-duration creatinine clearance determinations in predicting 24-hour creatinine clearance in critically ill and injured patients. J Trauma 2002;53(2):267–271. DOI: 10.1097/00005373-200208000-00013.
  70. Bairy M. Using kinetic eGFR for drug dosing in AKI: concordance between kinetic eGFR, Cockroft-Gault estimated creatinine clearance, and MDRD eGFR for drug dosing categories in a pilot study cohort. Nephron 2020;144(6):299–303. DOI: 10.1159/000507260.
  71. Bargnoux A, Kuster N, Cavalier E, Piéroni L, Souweine J, Delanaye P, et al. Serum creatinine: advantages and pitfalls. J Lab Precis Med 2018;3:71–77. DOI: 10.21037/jlpm.2018.08.01.
  72. Bagshaw SM, Langenberg C, Wan L, May CN, Bellomo R. A systematic review of urinary findings in experimental septic acute renal failure. Crit Care Med 2007;35(6):1592–1598. DOI: 10.1097/01.CCM.0000266684.17500.2F.
  73. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 2009;54(6):1012–1024. DOI: 10.1053/j.ajkd.2009.07.020.
  74. Siew ED, Ware LB, Gebretsadik T, Shintani A, Moons KG, Wickersham N, et al. Urine neutrophil gelatinase-associated lipocalin moderately predicts acute kidney injury in critically ill adults. J Am Soc Nephrol 2009;20(8):1823–1832. DOI: 10.1681/ASN.2008070673.
  75. Lumlertgul N, Amprai M, Tachaboon S, Dinhuzen J, Peerapornratana S, Kerr SJ, et al. Urine Neutrophil Gelatinase Associated Lipocalin (NGAL) for prediction of persistent AKI and major adverse kidney events. Sci Rep Nat Res 2020;10(1):8718. DOI: 10.1038/s41598-020-65764-w.
  76. Albert C, Zapf A, Haase M, Braun-Dullaeus RC, Heinz J, Haase-Fielitz A, et al. Neutrophil gelatinase-associated Lipocalin measured on clinical laboratory platforms for the prediction of acute kidney injury and the associated need for dialysis therapy: a systematic review and meta-analysis. Am J Kidney Dis 2020;76(6):826–841.E1. DOI: 10.1053/j.ajkd.2020.05.015.
  77. Doi K, Negishi K, Ishizu T, Katagiri D, Fujita T, Matsubara T, et al. Evaluation of new acute kidney injury biomarkers in a mixed intensive care unit. Crit Care Med 2011;39(11):2464–2469. DOI: 10.1097/CCM.0b013e318225761a.
  78. Susantitaphong P, Siribamrungwong M, Doi K, Noiri E, Terrin N, Jaber BL. Performance of urinary liver-type fatty acid-binding protein in acute kidney injury: a meta-analysis. Am J Kidney Dis 2013;61(3): 430–439. DOI: 10.1053/j.ajkd.2012.10.016.
  79. Zhang Z, Lu B, Sheng X, Jin N. Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kidney Dis 2011;58(3):356–365. DOI: 10.1053/j.ajkd.2011.02.389.
  80. Jia HM, Huang LF, Zheng Y, Li WX. Diagnostic value of urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor binding protein 7 for acute kidney injury: a meta-analysis. Crit Care 2017;21(7):77. DOI: 10.1186/s13054-017-1660-y.
  81. Liu C, Lu X, Mao Z, Kang H, Liu H, Pan L, et al. The diagnostic accuracy of urinary [TIMP-2]·[IGFBP7] for acute kidney injury in adults. A PRISMA-compliant meta-analysis. Medicine 2017;96(27):e7484. DOI: 10.1097/MD.0000000000007484.
  82. Klein SJ, Brandtner AK, Lehner GF, Ulmer H, Bagshaw SM, Wiedermann CJ, et al. Biomarkers for prediction of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis. Intensive Care Med 2018;44(3):323–336. DOI: 10.1007/s00134-018-5126-8.
  83. Ostermann M, Zarbock A, Goldstein S, Kashani K, Macedo E, Murugan R, et al. Recommendations on acute kidney injury biomarkers from the acute disease quality initiative: a consensus statement. JAMA Netw Open 2020;3(10):e2019209. DOI: 10.1001/jamanetworkopen.2020.19209.
  84. Matzke GR, Aronoff GR, Atkinson AJ Jr, Bennett WM, Decker BS, Eckardt KU, et al. Drug dosing consideration in patients with acute and chronic kidney disease—a clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2011;80(11): 1122–1137. DOI: 10.1038/ki.2011.322.
  85. Hisham M, Sivakumar MN, Veerasekar G. Impact of clinical pharmacist in an Indian intensive care unit. Indian J Crit Care Med 2016;20(2): 78–83. DOI: 10.4103/0972-5229.175931.
  86. Borthwick M. The role of the pharmacist in the intensive care unit. J Intensive Care Soc 2019;20(2):161–164. DOI: 10.1177/1751143718769043.
  87. Radigan EA, Gilchrist NA, Miller MA. Management of aminoglycosides in the intensive care unit. J Intensive Care Med 2010;25(6):327–342. DOI: 10.1177/0885066610377968.
  88. Streetman DS, Nafziger AN, Destache CJ, Bertino AS Jr. Individualized pharmacokinetic monitoring results in less aminoglycoside-associated nephrotoxicity and fewer associated costs. Pharmacotherapy 2001;21(4):443–451. DOI: 10.1592/phco.21.5.443.34490.
  89. Rybak MJ, Albrecht LM, Boike SC, Chandrasekar PH. Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother 1990;25(4):679–687. DOI: 10.1093/jac/25.4.679.
  90. Arnaud FCS, Libório AB. Attributable nephrotoxicity of vancomycin in critically ill patients: a marginal structural model study. J Antimicrob Chemother 2020;75(4):1031–1037. DOI: 10.1093/jac/dkz520.
  91. Takazono T, Tashiro M, Ota Y, Obata Y, Wakamura T, Miyazaki T, et al. Factor analysis of acute kidney injury in patients administered liposomal amphotericin B in a real-world clinical setting in Japan. Sci Rep 2020;10(1):15033. DOI: 10.1038/s41598-020-72135-y.
  92. Wegner B, Baer P, Gauer S, Oremek G, Hauser IA, Geiger H. Caspofungin is less nephrotoxic than amphotericin B in vitro and predominantly damages distal renal tubular cells. Nephrol Dial Transplant 2005;20(10):2071–2079. DOI: 10.1093/ndt/gfh948.
  93. Mary S. McCarthy SCP. Special nutrition challenges: current approach to acute kidney injury. Nutr Clin Pract 2014;29(1):56–62. DOI: 10.1177/0884533613515726.
  94. McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). J Parenter Enter Nutr 2016;40(2):159–211. DOI: 10.1177/0148607115621863.
  95. Fiaccadori E, Maggiore U, Rotelli C, Giacosa R, Picetti E, Parenti E, et al. Effects of different energy intakes on nitrogen balance in patients with acute renal failure: a pilot study. Nephrol Dial Transplant 2005;20(9):1976–1980. DOI: 10.1093/ndt/gfh956.
  96. Bufarah MNB, Costa NA, Losilla MPRP, Reis NSC, Silva MZC, Balbi AL, et al. Low caloric and protein intake is associated with mortality in patients with acute kidney injury. Clin Nutr ESPEN 2018;24:66–70. DOI: 10.1016/j.clnesp.2018.01.012.
  97. Scheinkestel CD, Kar L, Marshall K, Bailey M, Davies A, Nyulasi I, et al. Prospective randomized trial to assess caloric and protein needs of critically Ill, anuric, ventilated patients requiring continuous renal replacement therapy. Nutrition 2003;19(11–12):11. DOI: 10.1016/s0899-9007(03)00175-8.
  98. Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr 2019;38(1):48–79. DOI: 10.1016/j.clnu.2018.08.037.
  99. Druml W, Joannidis M, John S, Jörres A, Schmitz M, Kielstein J, et al. Metabolische Führung und Ernährung von Intensivpatienten mit renaler Dysfunktion: Empfehlungen der Sektionen Niere der DGIIN, ÖGIAIN und DIVI [Metabolic management and nutrition in critically ill patients with renal dysfunction: recommendations from the renal section of the DGIIN, ÖGIAIN, and DIVI]. Med Klin Intensivmed Notfmed 2018;113(6):393–400 [German]. DOI: 10.1007/s00063-018-0427-9.
  100. Fiaccadori E, Regolisti G, Maggiore U. Specialized nutritional support interventions in critically ill patients on renal replacement therapy. Curr Opin Clin Nutr Metab Care 2013;16(2):217–224. DOI: 10.1097/MCO.0b013e32835c20b0.
  101. Li Y, Tang X, Zhang J, Wu T. Nutritional support for acute kidney injury. Cochrane Database Syst Rev 2010;1. Art. No.: CD005426. DOI: 10.1002/14651858.CD005426.pub2.
  102. Ostermann M, Summers J, Lei K, Card D, Harrington DJ, Sherwood R, et al. Micronutrients in critically ill patients with severe acute kidney injury–a prospective study. Sci Rep [Internet] 2020;10(1):1–13. DOI: 10.1038/s41598-020-58115-2.
  103. Fiaccadori E. Nutritional assessment and delivery in renal replacement therapy patients. Semin Dial 2011;24(2):169–175. DOI: 10.1111/j.1525-139X.2011.00831.x.
  104. National Heart, Lung, and Blood Institute PETAL Clinical Trials Network, Ginde AA, Brower RG, Caterino JM, Finck L, Banner-Goodspeed VM, Grissom CK, et al. Early High-Dose Vitamin D3 for Critically Ill, Vitamin D- deficient Patients. New Eng J Med 2019;381(26):2529–2540. DOI: 10.1056/NEJMoa1911124.
  105. Chawla LS, Bellomo R, Bihorac A, Goldstein SL, Siew ED, Bagshaw SM, et al. Acute Disease Quality Initiative Workgroup. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat Rev Nephrol 2017;13(4):241–257. DOI: 10.1038/nrneph.2017.2.
  106. Gautam SC, Brooks CH, Balogun RA, Xin W, Ma JZ, Abdel-Rahman EM. Predictors and outcomes of post-hospitalization dialysis dependent acute kidney injury. Nephron 2015;131(3):185–190. DOI: 10.1159/000441607.
  107. Rathore AS, Chopra T, Ma JZ, Xin W, Abdel-Rahman EM. Long-term outcomes and associated risk factors of post-hospitalization dialysis-dependent acute kidney injury patients. Nephron 2017;137(2): 105–112. DOI: 10.1159/000478277.
  108. Hickson LJ, Chaudhary S, Williams AW, Dillon JJ, Norby SM, Gregoire JR, et al. Predictors of outpatient kidney function recovery among patients who initiate hemodialysis in the hospital. Am J Kidney Dis 2015;65(4):592–602. DOI: 10.1053/j.ajkd.2014.10.015.
  109. Ostermann M, Joannidis M, Pani A, Floris M, De Rosa S, Kellum JA, et al. 17th Acute Disease Quality Initiative (ADQI) Consensus Group. Patient selection and timing of continuous renal replacement therapy. Blood Purif 2016;42(3):224–237. DOI: 10.1159/000448506.
  110. Cruz DN, Goh CY, Marenzi G, Corradi V, Ronco C, Perazella MA. Renal replacement therapies for prevention of radiocontrast-induced nephropathy: a systematic review. Am J Med 2012;125(1):66–78.e3. DOI: 10.1016/j.amjmed.2011.06.029.
  111. Pistolesi V, Regolisti G, Morabito S, Gandolfini I, Corrado S, Piotti G, et al. Contrast medium induced acute kidney injury: a narrative review. J Nephrol 2018;31(6):797–812. DOI: 10.1007/s40620-018-0498-y.
  112. Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstädt H, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA 2016;315(20):2190–2199. DOI: 10.1001/jama.2016.5828.
  113. Barbar S.D, Clere-Jehl R, Bourredjem A, Hernu R, Montini F, Bruyère R, et al. IDEAL-ICU group: timing of renal-replacement therapy in patients with acute kidney injury and sepsis. N Engl J Med 2018;379(15):1431–1442. DOI: 10.1056/NEJMoa1803213.
  114. Gaudry S, Hajage D, Schortgen F, Martin-Lefevre L, Pons B, Boulet E, et al. AKIKI Study Group. Initiation strategies for renal replacement therapy in the intensive care unit. N Engl J Med 2016;375(2):122–133. DOI: 10.1056/NEJMoa1603017.
  115. STARRT-AKI Investigators, Canadian Critical Care Trials Group, Australian and New Zealand Intensive Care Society Clinical Trials Group, the United Kingdom Critical Care Research Group, Canadian Nephrology Trials Network, Irish Critical Care Trials Group, Bagshaw SM, Wald R, Adhikari NKJ, Bellomo R, da Costa BR, Dreyfuss D, et al. Timing of initiation of renal-replacement therapy in acute kidney injury. N Engl J Med 2020;383(3):240–251. DOI: 10.1056/NEJMoa2000741.
  116. Andonovic M, Shemilt R, Sim M, Traynor JP, Shaw M, Mark PB, et al. Timing of renal replacement therapy for patients with acute kidney injury: a systematic review and meta-analysis. J Intensive Care Soc 2020;22(1):1–11. DOI: 10.1177/1751143720901688.
  117. Chen JJ, Lee CC, Kuo G, Fan PC, Lin CU, Chang SW, et al. Comparison between watchful waiting strategy and early initiation of renal replacement therapy in the critically ill acute kidney injury population: an updated systematic review and meta-analysis. Ann Intensive Care 2020;10:30. DOI: 10.1186/s13613-020-0641-5.
  118. Annigeri RA, Ostermann M, Tolwani A, Vazquez-Rangel A, Ponce D, Bagga A, et al. Renal support for acute kidney injury in the developing world. Kidney Int Rep 2017;2(4):559–578. DOI: 10.1016/j.ekir.2017.04.006.
  119. Sodhi K, Philips A, Mishra RC, Tyagi N, Dixit SB, Chaudhary D, et al. Renal replacement therapy practices in India: a nationwide survey. Indian J Crit Care Med 2020;24(9):823–831. DOI: 10.5005/jp-journals-10071-23554.
  120. Lins RL, Elseviers MM, Van der Niepen P, Hoste E, Malbrain ML, Damas P, et al. SHARF investigators. Intermittent versus continuous renal replacement therapy for acute kidney injury patients admitted to the intensive care unit: results of a randomized clinical trial. Nephrol Dial Transplant 2009;24(2):512–518. DOI: 10.1093/ndt/gfn560.
  121. Schefold JC, von Haehling S, Pschowski R, Bender T, Berkmann C, Briegel S, et al. The effect of continuous versus intermittent renal replacement therapy on the outcome of critically ill patients with acute renal failure (CONVINT): a prospective randomized controlled trial. Crit Care 2014;18(1):R11. DOI: 10.1186/cc13188.
  122. Zhang L, Yang J, Eastwood GM, Zhu G, Tanaka A, Bellomo R. Extended daily dialysis versus continuous renal replacement therapy for acute kidney injury: a meta-analysis. Am J Kidney Dis 2015;66(2):322–330. DOI: 10.1053/j.ajkd.2015.02.328.
  123. Nash DM, Przech S, Wald R, O'Reilly D. Systematic review and meta-analysis of renal replacement therapy modalities for acute kidney injury in the intensive care unit. J Crit Care 2017;41:138–144. DOI: 10.1016/j.jcrc.2017.05.002.
  124. Rabindranath K, Adams J, Macleod AM, Muirhead N. Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev 2007;3:CD003773. DOI: 10.1002/14651858.CD003773.pub3.
  125. Phu NH, Hien TT, Mai NT, Chau TT, Chuong LV, Loc PP, et al. Hemofiltration and peritoneal dialysis in infection-associated acute renal failure in Vietnam. N Engl J Med 2002;347(12):895–902. DOI: 10.1056/NEJMoa020074.
  126. Gabriel DP, Caramori JT, Martim LC, Barretti P, Balbi AL. High volume peritoneal dialysis vs daily hemodialysis: a randomized, controlled trial in patients with acute kidney injury. Kidney Int Suppl 2008;108:S87–S93. DOI: 10.1038/
  127. Al-Hwiesh A, Abdul-Rahman I, Finkelstein F, Divino-Filho J, Qutub H, Al-Audah N, et al. Acute kidney injury in critically ill patients: a prospective randomized study of tidal peritoneal dialysis versus continuous renal replacement therapy. Ther Apher Dial 2018;22(4):371–379. DOI: 10.1111/1744-9987.12660.
  128. Yessayan L, Yee J, Frinak S, Szamosfalvi B. Continuous renal replacement therapy for the management of acid-base and electrolyte imbalances in acute kidney injury. Adv Chronic Kidney Dis 2016;23(3):203–210. DOI: 10.1053/j.ackd.2016.02.005. PMID: 27113697.
  129. Barton IK, Streather CP, Hilton PJ, Bradley RD. Successful treatment of severe lactic acidosis by haemofiltration using a bicarbonate-based replacement fluid. Nephrol Dial Transplant 1991;6(5):368–370. DOI: 10.1093/ndt/6.5.368.
  130. Zakharov S, Rulisek J, Nurieva O, Kotikova K, Navratil T, Komarc M, et al. Intermittent versus continuous renal replacement therapy in acute methanol poisoning: comparison of clinical effectivene
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.