Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 27 , ISSUE 1 ( January, 2023 ) > List of Articles

Pediatric Critical Care

Rate of Multidrug-resistance to Antimicrobial Drugs in Patients in Pediatric Neurointensive Care

Swapnil Patel

Keywords : Antimicrobial drugs, Multidrug-resistance, Neurointensive care, Pediatric

Citation Information : Patel S. Rate of Multidrug-resistance to Antimicrobial Drugs in Patients in Pediatric Neurointensive Care. Indian J Crit Care Med 2023; 27 (1):67-72.

DOI: 10.5005/jp-journals-10071-24377

License: CC BY-NC 4.0

Published Online: 31-12-2022

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

Background: Multidrug-resistant (MDR) organisms in the critical care unit are a worldwide concern. The vulnerability to MDR infection in pediatric patients admitted in neurocritical care are due to altered mental status, immature immune system, higher risk of aspiration, and more frequent use of invasive devices. We aimed to measure the burden of MDR infection in pediatric neurosurgical intensive care unit (NSICU) patients. Methods: All pediatric patients between 1 and 18 years for intracranial and spine surgeries admitted for more than 48 hours in NSICU were enrolled in the study. If patients showed a clinical picture of pneumonia, bloodstream infection (BSI), or urinary tract infection (UTI) after receiving mechanical ventilation or an indwelling device for at least 48 hours, samples of tracheal aspirates, urine, blood, and cerebrospinal fluid (CSF) were sent for microbiological culture. We noted the type of organism, MDR infection rate, and associated risk factors. Pearson Chi-squared test and Fisher's test were used for statistical analysis; p < 0.05 was considered statistically significant. Results: A total of 274 pediatric patients were studied. In 1 year, there was a total of 1,790 patient days. The inclusive MDR infection rate was 17.3/1,000 patient days. Also, Klebsiella pneumoniae (38.7%) was the commonest MDR pathogen. The commonest source of infection was BSI (32.3%). The risk factors associated with MDR infections were the length of stay in NSICU, mechanical ventilation of more than 5 days, emergency surgery, respiratory and cardiac comorbidities, and poor nutrition status (p < 0.05). Conclusion: The MDR infection rate in our study was 17.3/1,000 patient days in pediatric patients. Also, K. pneumoniae was found to be the commonest MDR pathogen. Bloodstream was the commonest source of infection.


HTML PDF Share
  1. Potocki M, Goette J, Szucs TD, Nadal D. Prospective survey of antibiotic utilization in pediatric hospitalized patients to identify targets for improvement of prescription. Infection 2003:31(6):398–403. DOI: 10.1007/s15010-003-4130-1.
  2. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske GE, et al. Multidrug-resistant, extensively drug-resistant, and pan drug-resistant bacteria an international expert proposal for interim standard definitions for acquired resistance. Clin Microb Infect 2012;18(3):268–281. DOI: 10.1111/j.1469-0691.2011.03570.x.
  3. Urrea M, Pons M, Serra M, Latorre C, Palomeque A. Prospective incidence study of nosocomial infections in a pediatric intensive care unit. Pediatr Infect Dis J 2003;22(6):490–494. DOI: 10.1097/01.inf.0000069758.00079.d3.
  4. Esteban E, Ferrer R, Urrea M, Suarez D, Rozas L, Balaguer M, et al. The impact of a quality improvement intervention to reduce nosocomial infections in a PICU. Pediatr Crit Care Med 2013;14(5):525–532. DOI: 10.1097/PCC.0b013e31828a87cc.
  5. Grohskopf LA, Sinkowitz–Cochran RL, Garrett DO, Sohn AH, Levine GL, Siegel JD, et al. Pediatric prevention network: A national point-prevalence survey of pediatric intensive care unit-acquired infections in the United States. J Pediatr 2002;140(4):432–438. DOI: 10.1067/mpd.2002.122499.
  6. Jordan GI, Arriourtua AB, Torre JA, Anton GJ, Vicente JC, González CT. A national multicentre study on nosocomial infections in PICU. An Pediatr (Barc) 2014;80(1):28–33. DOI: 10.1016/j.anpedi.2010.09.010.
  7. Raymond J, Aujard Y. Nosocomial infections in pediatric patients: A European, multicenter prospective study. European Study Group. Infect Control Hosp Epidemiol 2000;21(4):260–263. DOI: 10.1086/501755.
  8. Abbas Q, Haq AU, Kumar R, Ali SA, Hussain K, Sadia Shakoor. Evaluation of antibiotic use in pediatric intensive care unit of a developing country. Indian J Crit Care Med 2016;20(5):291–294. DOI: 10.4103/0972-5229.182197.
  9. Lawrence R, Jeyakumar E. Antimicrobial resistance: A cause for global concern. BMC Proc 2013;7(Suppl. 3):S1. DOI: 10.1186/1753-6561-7-S3-S1.
  10. Centers for Disease Control and Prevention. Guidelines for environmental infection control in healthcare facilities. 2003. Available at: https://www.cdc.gov/infectioncontrol/pdf/guidelines/environmental-guidelines-P.pdf. Accessed on: 29 December 2021.
  11. Magill SS, O'Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, et al. Changes in prevalence of health care-associated infections in U.S. Hospitals. N Engl J Med 2018;379(18):1732–1744. DOI: 10.1056/NEJMoa1801550.
  12. Muto CA, Jernigan JA, Ostrowsky BE, Richet HM, Jarvis WR, Boyce JM, et al. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and Enterococcus. Infect Control Hosp Epidemiol 2003;24:362–386. DOI: 10.1086/502213.
  13. Ostrowsky BE, Trick WE, Sohn AH, Quirk SB, Holt S, Carson LA, et al. Control of vancomycin-resistant Enterococcus in health care facilities in a region. N Engl J Med 2001;344(19):1427–1433. DOI: 10.1056/NEJM200105103441903.
  14. Muto CA, Giannetta ET, Durbin LJ, Simonton BM, Farr BM. Cost-effectiveness of perirectal surveillance cultures for controlling vancomycin-resistant Enterococcus. Infect Control Hosp Epidemiol 2002;23(8):429–435. DOI: 10.1086/502080.
  15. Huang X, Li G, Yi L, Li M, Wang J. The epidemiology of multidrug-resistant bacteria colonization and analysis of its risk factors in intensive care unit. Zhonghua Wei Zhong Bing JiJiu Yi Xue 2015;27:667–671. DOI: 10.3760/cma.j.issn.2095-4352.2015.08.010.
  16. Centers for Disease Control and Prevention. CDC/NHSN surveillance definitions for specific types of infections. 2014. Available at: https://www.cdc.gov/nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf. Accessed on: 20 December 2022.
  17. Centers for Disease Control and Prevention. National Healthcare Safety Network (NHSN) Patient Safety Component Manual. 2019. Available at: https://www.cdc.gov/nhsn/pdfs/pscmanual/pcsma.nual_current.pdf. Accessed on: 3 January 2022.
  18. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: The 27th informational supplement. 2017. Available at: https://clsi.org/media/1469/m100s27_sample.pdf. Accessed on: 12 May 2019.
  19. Tille PM. Bailey and Scott's Diagnostic Microbiology. 13th edition, St. Louis: Mosby Elsevier; 2013.
  20. Gastmeier P, Sohr D, Just HM, Nassauer A, Daschner F, Rüden H. How to survey nosocomial infections. Infect Control Hosp Epidemiol 2000;21(6):366–370. DOI: 10.1086/501774.
  21. Agodi A, Zarrilli R, Barchitta M, Anzaldi A, Di Popolo A, Mattaliano A. Alert surveillance of intensive care unit-acquired Acinetobacter infections in a Sicilian hospital. Clin Microbiol Infect 2006;12(3):241–247. DOI: 10.1111/j.1469-0691.2005.01339.x.
  22. Ylipalosaari P, Ala–Kokko TI, Laurila J, Ohtonen P, Syrjälä H. Intensive care acquired infection is an independent risk factor for hospital mortality: A prospective cohort study. Crit Care 2006;10(2):R66. DOI: 10.1186/cc4902.
  23. El-Nawawy A, Galal AA, Antonios MAM, Meheissen MA, El-Alfy. Incidence of multidrug-resistant organism among children admitted to pediatric intensive care Unit in a developing country. Microbial Drug Resistance 2018;24(8):1198–1206. DOI: 10.1089/mdr.2017.0414.
  24. Rezk AR, Bawady SA, Omar NN. Incidence of emerging multidrug-resistant organisms and its impact on the outcome in the pediatric intensive care. Egypt Pediatric Association Gaz 2021;69:25. DOI: 10.1186/s43054-021-00071-1.
  25. Rhim HY, Won SY, Kashefiolasl S, Brawanski N, Hattingen E, Berkefeld J, et al. Multidrug-resistant organisms in patients with subarachnoid hemorrhage (SAH). Sci Rep 2021;11(1):8309. DOI: 10.1038/s41598-021-87863-y.
  26. Agarwal R, Mohapatra S, Rath GP, Arti K. Active surveillance of health care associated infections in neurosurgical patients. J Clin Diagn Res 2017;11(7):DC01–DC04. DOI: 10.7860/JCDR/2017/26681.10146.
  27. Siwakoti S, Khanal B, Subedi A, Sharma A, Baral R, Bhattarai NR. Incidence and outcomes of multidrug resistant Gram-negative bacteria infections in intensive care unit from Nepal. Antimicrob Resist Infect Control 2018;7:114. DOI: 10.1186/s13756-018-0404-3.
  28. Murray MT, Beauchemin MP, Neu N, Larson EL. Prior antibiotic use and acquisition of multidrug-resistant organisms in hospitalized children: A systematic review. Infect Control Hosp Epidemiol 2019;40(10):1107–1115. DOI: 10.1017/ice.2019.215.
  29. Tfifha M, Ferjani A, Mallouli M, Mlika N, Abroug S, Boukadida J. Carriage of multidrug-resistant bacteria among pediatric patients before and during their hospitalization in a tertiary pediatric unit in Tunisia. Libyan J Med 2018;13(1):1419047. DOI: 10.1080/19932820.2017.1419047.
  30. Buke C, Armand–Lefevre L, Lolom I, Guerinot W, Deblangy C, Ruimy R, et al. Epidemiology of multidrug-resistant bacteria in patients with long hospital stays. Infect Control Hosp Epidemiol 2007;28(11):1255–1260. DOI: 10.1086/522678.
  31. Wang Z, Xia Z. What we can do? The risk factors for multi-drug resistant infection in pediatric intensive care unit (PICU): A case–control study. Ital J Pediatr 2020;46:17. DOI: 10.1186/s13052-019-0769-9.
  32. Allel K, García P, Labarca J, Munita JM, Rendic M, Undurraga EA, et al. Socioeconomic factors associated with antimicrobial resistance of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli in Chilean hospitals (2008–2017). Rev Panam Salud Publica 2020;44:e30. DOI: 10.26633/RPSP.2020.30.
  33. Giantsou E, Liratzopoulos N, Efraimidou E, Panopoulou M, Alepopoulou E, Kartali–Ktenidou S, et al. Both early-onset and late-onset ventilator-associated pneumonia are caused mainly by potentially multiresistant bacteria. Intensive Care Med 2005;31:1488–1494. DOI: 10.1007/s00134-005-2697-y.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.