Indian Journal of Critical Care Medicine

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 27 , ISSUE 11 ( November, 2023 ) > List of Articles

Original Article

Evaluation of Neutralization Potential of Naja naja and Daboia russelii Snake Venom by Root Extract of Cyanthillium cinereum

S Suji, MD Dinesh, KU Keerthi, KP Anagha, J Arya, KV Anju

Keywords : Antivenom activity, Cyanthillium cinereum, Daboia russelii, Envenomation, Naja naja, Root extract, Single ingredient

Citation Information : Suji S, Dinesh M, Keerthi K, Anagha K, Arya J, Anju K. Evaluation of Neutralization Potential of Naja naja and Daboia russelii Snake Venom by Root Extract of Cyanthillium cinereum. Indian J Crit Care Med 2023; 27 (11):821-829.

DOI: 10.5005/jp-journals-10071-24567

License: CC BY-NC 4.0

Published Online: 30-10-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Aim: One of the main reasons for the death due to snake bites is the non-availability of antivenoms in the regions where they are needed. The use of medicinal plants and plant-based natural products as an alternative to antivenom will become a milestone in snake bite envenomation. The present study investigates the in vitro antivenom properties of Cyanthillium cinereum root extracts. Materials and methods: The C. cinereum root's aqueous extract was prepared by the Soxhlet extraction method, and phytochemical screening was performed to detect the presence of various bioactive compounds. Thin-layer chromatography (TLC) and gas chromatography–mass spectrometry (GC–MS) analysis were performed for the detection and identification of phytochemical constituents. In this study, an in vitro model is used to assess the antivenom capability of aqueous extract. Venom toxicity and neutralization assays were as follows: An in vitro pharmacological evaluation was performed by direct hemolysis assay, indirect hemolytic assay, proteolytic activity, neutralization of procoagulant activity, and gelatin liquefaction method. Results: Qualitative analysis of phytochemicals by the standard method showed the presence of various phytochemical constituents. Also, GC–MS analysis showed the presence of three major compounds that possess antivenom activity from the obtained 60 bioactive compounds, and their chemical structures were also determined. Venom protein profiling was performed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) analysis. The plant extract was able to neutralize the Naja naja (N. naja) and Daboia russelii (D. russelii) venom induced hemolysis and it was reduced below 50 and 40%, respectively and the extract was also able to reduce the hemolytic halo produced by venoms. Procoagulant activity and gelatin liquefaction assay showed that venom-induced clotting was neutralized by increasing the root extract concentration sufficiently. Conclusion: The aqueous extract of the root of C. cinereum showed potent in vitro venom-neutralizing activity, and it can be used as a formidable therapeutic agent against N. naja and D. russelii envenomation.

  1. Majumder D, Sinha A, Bhattacharya SK, Ram R, Dasgupta U, Ram A. Epidemiological profile of snake bite in south 24 Parganas district of West Bengal with focus on underreporting of snake bite deaths. Indian journal of public health 2014;58(1):17–21. DOI: 10.4103/0019-557X.128158.
  2. Mohapatra B, Warrell DA, Suraweera W, Bhatia P, Dhingra N, Jotkar RM, et al. Snakebite mortality in India: A nationally representative mortality survey. PLoS Negl Trop Dis 2011;5(4):e1018. DOI: 10.1371/journal.pntd.0001018.
  3. Bharati K. Snakebite management in India: Challenges remain. EFI Bulletin 2023;4(1):32–34. DOI: 10.56450/EFIB.2023.v3i01.008.
  4. Bawaskar HS. Snake venoms and antivenoms: Critical supply issues. J Assoc Physicians India 2004;52:11–13. PMID: 15633710.
  5. Saravu K, Somavarapu V, Shastry AB, Kumar R. Clinical profile, species-specific severity grading, and outcome determinants of snake envenomation: An Indian tertiary care hospital-based prospective study. Indian J Crit Care Med 2012;16(4):187–192. DOI: 10.4103/0972-5229.106499.
  6. Martín G, Erinjery J, Gumbs R, Somaweera R, Ediriweera D, Diggle PJ, et al. Integrating snake distribution, abundance and expert-derived behavioural traits predicts snakebite risk. J Appl Ecol 2022;59(2): 611–623. DOI: 10.1111/1365-2664.14081.
  7. Chippaux JP. Estimating the global burden of snakebite can help to improve management. PLoS Med 2008;5(11):e221. DOI: 10.1371/journal.pmed.0050221.
  8. Rita P, Animesh DK, Aninda M, Benoy GK, Sandip H, Datta K. Snake bite, snake venom, anti-venom and herbal antidote. A review. Int J Res Ayurveda Pharm 2011;2(4):1060–1067.
  9. Félix–Silva J, Silva–Junior AA, Zucolotto SM, Fernandes–Pedrosa MD. Medicinal plants for the treatment of local tissue damage induced by snake venoms: an overview from traditional use to pharmacological evidence. Evidence-Based Complementary and Alternative Medicine 2017;2017:5748256. DOI: 10.1155/2017/5748256.
  10. Gutiérrez JM, Theakston RD, Warrell DA. Confronting the neglected problem of snake bite envenoming: The need for a global partnership. PLoS Med 2006;3(6):e150. DOI: 10.1371/journal.pmed. 0030150.
  11. Lancet T. Snake bite: Time to stop the neglect. The Lancet 2010;375(9708):2. DOI: 10.1016/S0140-6736(09)62168-1.
  12. Fry BG, Winkel KD, Wickramaratna JC, Hodgson WC, Wüster W. Effectiveness of snake antivenom: Species and regional venom variation and its clinical impact. J Toxicol Toxin Rev 2003;22(1):23–34. DOI: 10.1081/TXR-120019018.
  13. Lynch VJ. Inventing an arsenal: Adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes. BMC Evol Biol 2007;7(1):2. DOI: 10.1186/1471-2148-7-2.
  14. Sunagar K, Fry BG, Jackson TN, Casewell NR, Undheim EA, Vidal N, et al. Molecular evolution of vertebrate neurotrophins: Co-option of the highly conserved nerve growth factor gene into the advanced snake venom arsenalf. PloS One 2013;8(11):e81827. DOI: 10.1371/journal.pone.0081827.
  15. Harris JB, Scott–Davey T. Secreted phospholipases A2 of snake venoms: effects on the peripheral neuromuscular system with comments on the role of phospholipases A2 in disorders of the CNS and their uses in industry. Toxins 2013;5(12):2533–2571. DOI: 10.3390/toxins5122533.
  16. Tsetlin VI. Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic acetylcholine receptors: Pharmacological tools and endogenous modulators. Trends Pharmacol Sci 2015;36(2):109–123. DOI: 10.1016/
  17. Mukherjee AK, Mackessy SP. Prevention and improvement of clinical management of snakebite in Southern Asian countries: A proposed road map. Toxicon 2021;200:140–152. DOI: 10.1016/j.toxicon.2021.07.008.
  18. Patra A, Banerjee D, Dasgupta S, Mukherjee AK. The in vitro laboratory tests and mass spectrometry-assisted quality assessment of commercial polyvalent antivenom raised against the ‘Big Four’ venomous snakes of India. Toxicon 2021;192:15–31. DOI: 10.1016/j.toxicon.2020.12.015.
  19. Gadwalkar SR, Kumar NS, Kushal DP, Shyamala G, Mohammad MZ, Vishwanatha H. Judicious use of antisnake venom in the present period of scarcity. Indian J Crit Care Med 2014;18(11):722. DOI: 10.4103/0972-5229.144014.
  20. Makhija IK, Khamar D. Anti-snake venom properties of medicinal plants. Der Pharmacia Lettre 2010;2(5):399–411. DOI: 10.1590/s2175-97902022e191124.
  21. Mukherjee AK. Green medicine as a harmonizing tool to antivenom therapy for the clinical management of snakebite: The road ahead. Indian J Med Res 2012;136(1):10–12. PMID: 22885258.
  22. Adeyemi S, Larayetan R, Onoja AD, Ajayi A, Yahaya A, Ogunmola OO, et al. Anti-hemorrhagic activity of ethanol extract of Moringa oleifera leaf on envenomed albino rats. Scientific African 2021;12:e00742. DOI: 10.1016/j.sciaf.2021.e00742.
  23. Butt MA, Ahmad M, Fatima A, Sultana S, Zafar M, Yaseen G, et al. Ethnomedicinal uses of plants for the treatment of snake and scorpion bite in Northern Pakistan. J Ethnopharmacol 2015;168: 164–1681. DOI: 10.1016/j.jep.2015.03.045.
  24. Guha G, Rajkumar V, Mathew L, Kumar RA. The antioxidant and DNA protection potential of Indian tribal medicinal plants. Turkish J Biol 2011;35(2):233–242. DOI: 10.3906/biy-0906-64.
  25. Evans WC. Trease and Evans Pharmacognosy, 14th edition. Singapore: Harcourt Brace and Company; 1997.
  26. Qiu SX, Cordell GA, Kumar BR, Rao YN, Ramesh M, Kokate C, et al. Bisdesmosidic pregnane glycosides from Caralluma lasiantha. Phytochemistry 1999;50(3):485–491. DOI: 10.1016/s0031-9422(98)00569-x.
  27. Mace ME. Histochemical localization of phenols in healthy and diseased banana roots. Physiologia Plantarum 1963;16(4):915–925. DOI: 10.1111/j.1399-3054.1963.tb08367.x.
  28. Evans WC, Trease GE. Trease and Evans Pharmacognosy, 15th edition. London: Saunders; 2002.
  29. Sofowora A. Recent trends in research into African medicinal plants. J Ethnopharmacol 1993;38(2–3):209–214. DOI: 10.1016/0378-8741(93)90017-y.
  30. Upadhyaya SK, Singh V. Phytochemical evaluation of Cassia obtusifolia L. and Cassia tora L. Proc Indian Acad Sci Plant Sci 1986;96(4):321–326. DOI: 10.1007/bf03053254.
  31. Rasch E, Swift H. Microphotometric analysis of the cytochemical Millon reaction. J Histochem Cytochem 1960;8(1):4–17. DOI: 10.1177/8.1.4.
  32. Yasuma A, Ichikawa T. A new Histochemical staining method for protein. J Lab Clin Med 1953;41(2):296–299. PMID: 13035263.
  33. Yemm EW, Willis A. The estimation of carbohydrates in plant extracts by anthrone. Biochem J 1954;57(3):508–514. DOI: 10.1042/bj0570508.
  34. Banu HR, Nagarajan N. TLC and HPTLC fingerprinting of leaf extracts of Wedelia chinensis (Osbeck) Merrill. J Pharmaco Phytochem 2014;2(6):29–33.
  35. Laemmli UK. SDS–PAGE Laemmli method. Nature 1970;227(5259): 680–685. DOI: 10.1038/227680a0.
  36. Gutiérrez J, Avila C, Rojas E, Cerdas L. An alternative in vitro method for testing the potency of the polyvalent antivenom produced in Costa Rica. Toxicon 1988;26(4):411–413. DOI: 10.1016/0041-0101(88) 90010-4.
  37. Vijayaraghavan P, Vincent SG. A simple method for the detection of protease activity on agar plates using Bromocresolgreen dye. J Biochem Technol 2013;4(3):628–630.
  38. Theakston RD, Reid HA. Development of simple standard assay procedures for the characterization of snake venoms. Bulletin of the world health organization 1983;61(6):949–956. PMID: 6609011.
  39. Gené J, Roy A, Rojas G, Gutiérrez J, Cerdas L. Comparative study on coagulant, defibrinating, fibrinolytic and fibrinogenolytic activities of Costa Rican crotaline snake venoms and their neutralization by a polyvalent antivenom. Toxicon 19891;27(8):841–848. DOI: 10.1016/0041-0101(89)90096-2.
  40. Lowry OH, Rosebroug h NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;194(1):265–275. PMID: 14907713.
  41. Liaqat A, Mallhi TH, Khan YH, Khokhar A, Chaman S, Ali M. Anti-snake venom properties of medicinal plants: A comprehensive systematic review of literature. Braz J Pharm Sci 2022;58:e191124. DOI: 10.1590/s2175-97902022e191124.
  42. Gnanaselvan S, Sivaraman T. Effect of aqueous root extract of Cynodon dactylon on the hemolytic activity of cardiotoxins from Indian cobra (Naja naja). J Appl Pharmaceut Sci 2020;10(3):113–118. DOI: 10.7324/JAPS.2020.103015.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.