Indian Journal of Critical Care Medicine

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 27 , ISSUE 6 ( June, 2023 ) > List of Articles

Original Article

Prevalence of Augmented Renal Clearance (ARC), Utility of Augmented Renal Clearance Scoring System (ARC score) and Augmented Renal Clearance in Trauma Intensive Care Scoring System (ARCTIC score) in Predicting ARC in the Intensive Care Unit: Proactive Study

Girish Kanna, Rajeev A Annigeri

Keywords : ARC score, ARCTIC score, Augmented renal clearance, Creatinine clearance

Citation Information : Kanna G, Annigeri RA. Prevalence of Augmented Renal Clearance (ARC), Utility of Augmented Renal Clearance Scoring System (ARC score) and Augmented Renal Clearance in Trauma Intensive Care Scoring System (ARCTIC score) in Predicting ARC in the Intensive Care Unit: Proactive Study. Indian J Crit Care Med 2023; 27 (6):433-443.

DOI: 10.5005/jp-journals-10071-24479

License: CC BY-NC 4.0

Published Online: 31-05-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Objectives: We aimed to study the prevalence of augmented renal clearance (ARC) and validate the utility of ARC and ARCTIC scores. We also aimed to assess the correlation and agreement between estimated GFR (eGFR-EPI) and 8-hour measured creatinine clearance (8 hr-mCLcr). Study design and methodology: This was a prospective, observational study done in the mixed medical-surgical intensive care unit (ICU) and 90 patients were recruited. 8 hr-mCLcr, ARC, and ARCTIC scores and eGFR-EPI were calculated for all patients. ARC was said to be present if 8 hr-mCLcr was ≥ 130 mL/min. Results: Four patients were excluded from the analysis. The prevalence of ARC was 31.4%. The sensitivity, specificity, and positive and negative predictive values of ARC and ARCTIC scores were found to be 55.6, 84.7, 62.5, 80.6, and 85.2, 67.8, 54.8, and 90.9 respectively. AUROC for ARC and ARCTIC scores were 0.802 and 0.765 respectively. A strong positive correlation and poor agreement were observed between eGFR-EPI and 8 hr-mCLcr. Conclusion: The prevalence of ARC was significant and the ARCTIC score showed good potential as a screening tool to predict ARC. Lowering the cut-off of ARC score to ≥5 improved its utility in predicting ARC. Despite its poor agreement with 8 hr-mCLcr, eGFR-EPI with a cut-off ≥114 mL/min showed utility in predicting ARC.

  1. Bilbao-Meseguer I, Rodriguez-Gascon A, Barrasa H, Isla A, Solinís MÁ. Augmented renal clearance in critically ill patients: A systematic review. Clinical pharmacokinetics 2018;57(9):1107–1121. DOI: 10.1007/s40262-018-0636-7.
  2. Udy AA, Roberts JA, Boots RJ, Paterson DL, Lipman J. Augmented renal clearance. Clinical pharmacokinetics 2010;49(1):1–6. DOI:
  3. De Waele JJ, Dumoulin A, Janssen A, Hoste EA. Epidemiology of augmented renal clearance in mixed ICU patients. Minerva Anestesiol 2015;81(10):1079–1085. PMID: 25697881.
  4. Udy AA, Roberts JA, Shorr AF, Boots RJ, Lipman J. Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: Identifying at-risk patients. Critical Care 2013;17(1):1–9. DOI: 10.1186/cc12544.
  5. Baptista JP, Martins PJ, Marques M, Pimentel JM. Prevalence and risk factors for augmented renal clearance in a population of critically ill patients. Journal of intensive care medicine 2020;35(10):1044–1052. DOI: 10.1177/0885066618809688.
  6. Udy AA, Baptista JP, Lim NL, Joynt GM, Jarrett P, Wockner L, et al. Augmented renal clearance in the ICU: Results of a multicentre observational study of renal function in critically ill patients with normal plasma creatinine concentrations. Critical care medicine 2014;42(3):520–527. DOI: 10.1097/CCM.0000000000000029.
  7. Tsai D, Udy AA, Stewart PC, Gourley S, Morick NM, Lipman J, et al. Prevalence of augmented renal clearance and performance of glomerular filtration estimates in indigenous Australian patients requiring intensive care admission. Anaesth Intensive Care 2018;46(1):42–50. DOI: 10.1177/0310057X1804600107.
  8. Claus BO, Hoste EA, Colpaert K, Robays H, Decruyenaere J, De Waele JJ. Augmented renal clearance is a common finding with worse clinical outcome in critically ill patients receiving antimicrobial therapy. J Crit Care 2013;28(5):695–700. DOI: 10.1016/j.jcrc.2013.03.003.
  9. Roberts JA, Kruger P, Paterson DL, Lipman J. Antibiotic resistance—what's dosing got to do with it?. Crit Care Med 2008;36(8):2433–2340. DOI: 10.1097/CCM.0b013e318180fe62.
  10. Saran S, Rao NS, Azim A. Drug dosing in critically Ill patients with acute kidney injury and on renal replacement therapy. Indian J Crit Care Med 2020;24(Suppl 3):S129–S134. DOI: 10.5005/jp-journals-10071-23392.
  11. Barletta JF, Mangram AJ, Byrne M, Sucher JF, Hollingworth AK, Ali-Osman FR, et al. Identifying augmented renal clearance in trauma patients: Validation of the augmented renal clearance in trauma intensive care scoring system. J Trauma Acute Care Surg 2017;82(4):665–671. DOI: 10.1097/TA.0000000000001387.
  12. Al-Dorzi HM, Alsadhan AA, Almozaini AS, M Alamri A, Tamim H, Sadat M, et al. The performance of equations that estimate Glomerular filtration rate against measured urinary creatinine clearance in critically ill patients. Critical Care Research and Practice 2021;18:2021. DOI:
  13. Ruiz S, Minville V, Asehnoune K, Virtos M, Georges B, Fourcade O, et al. Screening of patients with augmented renal clearance in ICU: taking into account the CKD-EPI equation, the age, and the cause of admission. Annals of intensive care 2015;5(1):1–9. PMC4681181.
  14. Udy AA, Morton FJ, Nguyen-Pham S, Jarrett P, Lassig-Smith M, Stuart J, et al. A comparison of CKD-EPI estimated glomerular filtration rate and measured creatinine clearance in recently admitted critically ill patients with normal plasma creatinine concentrations. BMC nephrology 2013;14(1):1–7. DOI:
  15. Martin JH, Fay MF, Udy A, Roberts J, Kirkpatrick C, Ungerer J, et al. Pitfalls of using estimations of glomerular filtration rate in an intensive care population. Internal Medicine Journal 2011;41(7):537–543. DOI: 10.1111/j.1445-5994.2009.02160.x.
  16. Kharbanda M, Majumdar A, Basu S, Todi S. Assessment of accuracy of Cockcroft-Gault and MDRD formulae in critically ill Indian patients. Indian J Crit Care Med 2013;17(2):71–75. DOI: 10.4103/0972-5229.114820.
  17. Adnan S, Ratnam S, Kumar S, Paterson D, Lipman J, Roberts J, et al. Select critically ill patients at risk of augmented renal clearance: Experience in a Malaysian intensive care unit. Anaesthesia and intensive care 2014;42(6):715–722. DOI: 10.1177/0310057X1404200606.
  18. Cherry RA, Eachempati SR, Hydo L, Barie PS. Accuracy of short-duration creatinine clearance determinations in predicting 24-hour creatinine clearance in critically ill and injured patients. J Trauma. 2002;53(2):267–271. DOI: 10.1097/00005373-200208000-00013.
  19. Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y, et al. New creatinine-and cystatin C–based equations to estimate GFR without race. N Engl J Med 2021;4;385(19):1737–1749. DOI: 10.1056/NEJMoa2102953.
  20. Delgado C, Baweja M, Crews DC, Eneanya ND, Gadegbeku CA, Inker LA, et al. A unifying approach for GFR estimation: Recommendations of the NKF-ASN task force on reassessing the inclusion of race in diagnosing kidney disease. Am J Kidney Dis 2022;79(2):268–288. DOI: 10.1053/j.ajkd.2021.08.003.
  21. Kawano Y, Morimoto S, Izutani Y, Muranishi K, Kaneyama H, Hoshino K, et al. Augmented renal clearance in Japanese intensive care unit patients: A prospective study. Journal of intensive care 2016;4(1):1–7. DOI: 10.1186/s40560-016-0187-7.
  22. Campassi ML, Gonzalez MC, Masevicius FD, Vazquez AR, Moseinco M, Navarro NC, et al. Augmented renal clearance in critically ill patients: Incidence, associated factors and effects on vancomycin treatment. Revista Brasileira de terapia intensiva 2014;26(1):13–20. DOI: 10.5935/0103-507x.20140003.
  23. Akers KS, Niece KL, Chung KK, Cannon JW, Cota JM, Murray CK. Modified Augmented Renal Clearance score predicts rapid piperacillin and tazobactam clearance in critically ill surgery and trauma patients. Journal of Trauma and Acute Care Surgery. 2014; 77(3 Suppl 2):S163–S170. DOI: 10.1097/TA.0000000000000191.
  24. Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro III AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150(9):604–612. DOI: 10.7326/0003-4819-150-9-200905050-00006.
  25. Huttner A, Von Dach E, Renzoni A, Huttner BD, Affaticati M, Pagani L, et al. Augmented renal clearance, low β-lactam concentrations and clinical outcomes in the critically ill: An observational prospective cohort study. Int J Antimicrob Agents 2015;45(4):385–392. DOI: 10.1016/j.ijantimicag.2014.12.017.
  26. Asín-Prieto E, Rodríguez-Gascón A, Isla A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J Infect Chemother 2015;21(5):319–329. DOI: 10.1016/j.jiac.2015.02.001.
  27. Spadaro S, Berselli A, Fogagnolo A, Capuzzo M, Ragazzi R, Marangoni E, et al. Evaluation of a protocol for vancomycin administration in critically patients with and without kidney dysfunction. BMC Anesthesiol 2015;15(1):1–7. DOI: 10.1186/s12871-015-0065-1.
  28. Udy AA, Varghese JM, Altukroni M, Briscoe S, McWhinney BC, Ungerer JP, et al. Subtherapeutic initial β-lactam concentrations in select critically ill patients. Chest. 2012;142(1):30–39. DOI:
  29. Carlier M, Carrette S, Roberts JA, Stove V, Verstraete A, Hoste E, et al. Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used?. Crit care. 2013;17(3):1–9. DOI: 10.1186/cc12705.
  30. Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function—measured and estimated glomerular filtration rate. N Engl J Med 2006;354(23):2473–2483. DOI: 10.1056/NEJMra054415.
  31. Grissom CK, Brown SM, Kuttler KG, Boltax JP, Jones J, Jephson AR, et al. A modified sequential organ failure assessment score for critical care triage. Disaster Med Public Health Prep 2010;4(4):277–284. DOI: 10.1001/dmp.2010.40.
  32. Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute physiology and chronic health evaluation (APACHE) IV: Hospital mortality assessment for today's critically ill patients. Critical Care Medicine 2006;34(5):1297–1310. DOI: 10.1097/01.CCM.0000215112.84523.F0.
  33. Vallabhajosyula S, Jentzer JC, Kotecha AA, Murphree DH, Barreto EF, Khanna AK, et al. Development and performance of a novel vasopressor-driven mortality prediction model in septic shock. Ann Intensive Care 2018;8(1):1–9. DOI: 10.1186/s13613-018-0459-6.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.