Indian Journal of Critical Care Medicine

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 28 , ISSUE 4 ( April, 2024 ) > List of Articles

Original Article

The Evolution of Central Venous-to-arterial Carbon Dioxide Difference (PCO2 Gap) during Resuscitation Affects ICU Outcomes: A Prospective Observational Study

Kapil G Zirpe, Anand M Tiwari, Atul P Kulkarni, Hrishikesh S Vaidya, Sushma K Gurav, Abhijit M Deshmukh, Prasad B Suryawanshi, Upendrakumar S Kapse, Abhaya P Bhoyar, Piyush A Dhawad, Shameek Mukherjee

Keywords : Cardiac index, Circulatory shock, Hemodynamic resuscitation, PCO2 gap, Serum lactate

Citation Information : Zirpe KG, Tiwari AM, Kulkarni AP, Vaidya HS, Gurav SK, Deshmukh AM, Suryawanshi PB, Kapse US, Bhoyar AP, Dhawad PA, Mukherjee S. The Evolution of Central Venous-to-arterial Carbon Dioxide Difference (PCO2 Gap) during Resuscitation Affects ICU Outcomes: A Prospective Observational Study. Indian J Crit Care Med 2024; 28 (4):349-354.

DOI: 10.5005/jp-journals-10071-24680

License: CC BY-NC 4.0

Published Online: 30-03-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Introduction: The usual methods of perfusion assessment in patients with shock, such as capillary refill time, skin mottling, and serial serum lactate measurements have many limitations. Veno-arterial difference in the partial pressure of carbon dioxide (PCO2 gap) is advocated being more reliable. We evaluated serial change in PCO2 gap during resuscitation in circulatory shock and its effect on ICU outcomes. Materials and methods: This prospective observational study included 110 adults with circulatory shock. Patients were resuscitated as per current standards of care. We recorded invasive arterial pressure, urine output, cardiac index (CI), PCO2 gap at ICU admission at 6, 12, and 24 hours, and various patient outcomes. Results: Significant decrease in PCO2 gap was observed at 6 h and was accompanied by improvement in serum lactate, mean arterial pressure, CI and urine output in (n = 61). We compared these patients with those in whom this decrease did not occur (n = 49). Mortality and ICU LOS was significantly lower in patients with low PCO2 gap, while more patients with high PCO2 gap required RRT. Conclusion: We found that a persistently high PCO2 gap at 6 and 12 h following resuscitation in patients with shock of various etiologies, was associated with increased mortality, need for RRT and increased ICU LOS. High PCO2 gap had a moderate discriminative ability to predict mortality.

PDF Share
  1. Vincent JL, De Backer D. Circulatory shock. N Engl J Med 2013;369(18):1726–1734. DOI: 10.1056/NEJMra1208943.
  2. Vincent JL, Ince C, Bakker J. Clinical review: Circulatory shock–an update: A tribute to Professor Max Harry Weil. Crit Care 2012;16(6):239. DOI: 10.1186/cc11510.
  3. Gavelli F, Teboul JL, Monnet X. How can CO2-derived indices guide resuscitation in critically ill patients? J Thorac Dis 2019;11(Suppl 11):S1528–S1537. DOI: 10.21037/jtd.2019.07.10.
  4. Kriswidyatomo P, Pradnyan Kloping Y, Guntur Jaya M, Adrian Nugraha R, Prawira Putri C, Hendrawan Putra D, et al. Prognostic value of PCO2 gap in adult septic shock patients: A systematic review and meta-analysis. Turk J Anaesthesiol Reanim 2022;50(5):324–331. DOI: 10.5152/TJAR.2021.21139
  5. Vallet B, Pinsky MR, Cecconi M. Resuscitation of patients with septic shock: Please “mind the gap”! Intensive Care Med 2013;39(9):1653–1655. DOI: 10.1007/s00134-013-2998-5.
  6. Patil VP. Mystery of PCO2 gap in sepsis. Indian J Crit Care Med 2019;23(10):443–444. DOI: 10.5005/jp-journals-10071-23260.
  7. Vallée F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, et al. Central venous-to-arterial carbon dioxide difference: An additional target for goal-directed therapy in septic shock? Intensive Care Med 2008;34(12):2218–2225. DOI: 10.1007/s00134-008-1199-0.
  8. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Crit Care Med 2021;49(11):e1063–e1143. DOI: 10.1097/CCM.0000000000005337.
  9. Araujo DT, Felice VB, Meregalli AF, Friedman G. Value of central venous to arterial CO2 difference after early goal-directed therapy in septic shock patients. Indian J Crit Care Med 2019;23(10):449–453. DOI: 10.5005/jp-journals-10071-23262.
  10. Lemeshow S. Sample size determination in health studies: A practical manual. World Health Organization; 1991.
  11. Wang M, Jiang L, Zhu B, Li W, Du B, Kang Y, et al; China critical care sepsis trial (CCCST) workgroup. The prevalence, risk factors, and outcomes of sepsis in critically ill patients in China: A multicenter prospective cohort study. Front Med (Lausanne) 2020;7:593808. DOI: 10.3389/fmed.2020.593808.
  12. (Accessed on 01/09/2023 at 15.00 IST).
  13. Dres M, Monnet X, Teboul JL. Hemodynamic management of cardiovascular failure by using PCO(2) venous-arterial difference. J Clin Monit Comput 2012; 26(5):367–374. DOI: 10.1007/s10877-012-9381-x.
  14. van Beest PA, Lont MC, Holman ND, Loef B, Kuiper MA, Boerma EC. Central venous-arterial pCO2 difference as a tool in resuscitation of septic patients. Intensive Care Med 2013;39(6):1034–1039. DOI: 10.1007/s00134-013-2888-x.
  15. Ospina-Tascón GA, Bautista-Rincón DF, Umaña M, Tafur JD, Gutiérrez A, García AF, et al. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit Care 2013;17(6):R294. DOI: 10.1186/cc13160.
  16. Du W, Liu DW, Wang XT, Long Y, Chai WZ, Zhou X, et al. Combining central venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock. J Crit Care 2013;28(6):1110.e1–e5. DOI: 10.1016/j.jcrc.2013.07.049.
  17. Scheeren TWL, Wicke JN, Teboul JL. Understanding the carbon dioxide gaps. Curr Opin Crit Care 2018;24(3):181–189. DOI: 10.1097/MCC.0000000000000493.
  18. Janotka M, Ostadal P. Biochemical markers for clinical monitoring of tissue perfusion. Mol Cell Biochem 2021;476(3):1313–1326. DOI: 10.1007/s11010-020-04019-8.
  19. Mallat J, Pepy F, Lemyze M, Gasan G, Vangrunderbeeck N, Tronchon L, et al. Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock: A prospective observational study. Eur J Anaesthesiol 2014;31(7):371–380. DOI: 10.1097/EJA.0000000000000064.
  20. Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, et al. Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med 2005;31(6):818–822. DOI: 10.1007/s00134-005-2602-8.
  21. Transport of oxygen and carbon dioxide in the blood and body fluids. In Textbook of Medical Physiology, Editors Guyton AC, Hall JE, 11th Edition, Elsevier Inc.1600 John F. Kennedy Blvd., Suite 1800, Philadelphia, Pennsylvania 19103-2899 (2000).
  22. Groeneveld AB. Interpreting the venous-arterial PCO2 difference. Crit Care Med 1998;26(6):979–980. DOI: 10.1097/00003246-199806000-00002.
  23. Durkin R, Gergits MA, Reed JF 3rd, Fitzgibbons J. The relationship between the arteriovenous carbon dioxide gradient and cardiac index. J Crit Care 1993;8(4):217–221. DOI: 10.1016/0883-9441(93) 90005-6.
  24. Tsaousi GG, Karakoulas KA, Amaniti EN, Soultati ID, Zouka MD, Vasilakos DG. Correlation of central venous-arterial and mixed venous-arterial carbon dioxide tension gradient with cardiac output during neurosurgical procedures in the sitting position. Eur J Anaesthesiol 2010;27(10):882–889. DOI: 10.1097/EJA.0b013e32833d126f.
  25. Mecher CE, Rackow EC, Astiz ME, Weil MH. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med 1990;18(6):585–589. DOI: 10.1097/00003246-199006000-00001.
  26. Adrogué HJ, Rashad MN, Gorin AB, Yacoub J, Madias NE. Assessing acid-base status in circulatory failure. Differences between arterial and central venous blood. N Engl J Med 1989;320(20):1312–1316. DOI: 10.1056/NEJM198905183202004.
  27. Kazarian KK, Del Guercio LR. The use of mixed venous blood gas determinations in traumatic shock. Ann Emerg Med 1980;9(4): 179–182. DOI: 10.1016/s0196-0644(80)80002-3.
  28. Robin E, Futier E, Pires O, Fleyfel M, Tavernier B, Lebuffe G, et al. Central venous-to-arterial carbon dioxide difference as a prognostic tool in high-risk surgical patients. Crit Care 2015;19(1):227. DOI: 10.1186/s13054-015-0917-6.
  29. Mallat J, Mohammad U, Lemyze M, Meddour M, Jonard M, Pepy F, et al. Acute hyperventilation increases the central venous-to-arterial PCO2 difference in stable septic shock patients. Ann Intensive Care 2017;7(1):31. DOI: 10.1186/s13613-017-0258-5.
  30. Guo Z, Wang Y, Xie C, Hua G, Ge S, Li Y. Effects of respiratory rate on venous-to-arterial CO2 tension difference in septic shock patients undergoing volume mechanical ventilation. Eur J Med Res 2020;25(1):6. DOI: 10.1186/s40001-020-00402-9.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.