Indian Journal of Critical Care Medicine

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 28 , ISSUE 5 ( May, 2024 ) > List of Articles


mNUTRIC Score in ICU Mortality Prediction: An Emerging Frontier or Yet Another Transient Trend?

Sumalatha Arunachala, Jeevan Kumar

Keywords : Acute physiology and chronic health evaluation II, Artificial intelligence, ICU mortality, Inflammation, Malnutrition, Mortality prediction, Modified nutrition risk in critically ill score

Citation Information : Arunachala S, Kumar J. mNUTRIC Score in ICU Mortality Prediction: An Emerging Frontier or Yet Another Transient Trend?. Indian J Crit Care Med 2024; 28 (5):422-423.

DOI: 10.5005/jp-journals-10071-24713

License: CC BY-NC 4.0

Published Online: 30-04-2024

Copyright Statement:  Copyright © 2024; The Author(s).


PDF Share
  1. Narayan SK, Gudivada KK, Krishna B. Assessment of nutritional status in the critically ill. Indian J Crit Care Med 2020;24(Suppl 4):S152–S156. DOI: 10.5005/jp-journals-10071-23617.
  2. Heyland DK, Dhaliwal R, Jiang X, Day AG. Identifying critically ill patients who benefit the most from nutrition therapy: The development and initial validation of a novel risk assessment tool. Crit Care 2011;15(6):R268. DOI: 10.1186/cc10546.
  3. Villet S, Chiolero RL, Bollmann MD, Revelly JP, Cayeux R N MC, Delarue J, et al. The negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr 2005;24(4):502–509. DOI: 10.1016/j.clnu.2005.03.006.
  4. Cederholm T, Barazzoni R, Austin P, Ballmer P, Biolo G, Bischoff SC, et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr 2017;36(1):49–64. DOI: 10.1016/j.clnu.2016.09.004.
  5. Wang WN, Wang CY, Hsu CY, Fu PK. Comparison of feeding efficiency and hospital mortality between small bowel and nasogastric tube feeding in critically ill patients at high nutritional risk. Nutrients 2020;12(7):2009. DOI: 10.3390/nu12072009.
  6. Rahman A, Hasan RM, Agarwala R, Martin C, Day AG, Heyland DK. Identifying critically ill patients who will benefit most from nutritional therapy: Further validation of the “modified NUTRIC” nutritional risk assessment tool. Clin Nutr 2016;35(1):158–162. DOI: 10.1016/j.clnu.2015.01.015.
  7. Ibrahim DA, Elkabarity RH, Moustafa ME, El-Gendy HA. Modified NUTRIC score and outcomes in critically ill patients: A meta-analysis. Egyptian Journal of Anaesthesia 2020;36(1):288–296. DOI: 10.1080/11101849.2020.1848240.
  8. Kenworthy S, Agarwal E, Farlow L, Angus R, Marshall AP. Feasibility of using the “modified NUTrition Risk In the Critically ill” nutritional risk screening tool to identify nutritionally at-risk patients in an Australian intensive care unit. Aust Crit Care 2020;33(3):259–263. DOI: 10.1016/j.aucc.2019.08.003.
  9. Prakash J, Verma S, Shrivastava P, Saran K, Kumari A, Raj K, et al. Modified NUTRIC score as a predictor of all-cause mortality in critically ill patients: A systematic review and meta-analysis. Indian J Crit Care Med 2024;28(5):495–503.
  10. Devabhaktuni P, Samavedam S, Thota GVS, Pusala SV, Velaga K, Bommakanti L, et al. Clinical profile and outcome of obstetric ICU patients. APACHE II, SOFA, SAPS II and MPM scoring systems for prediction of prognosis. Open Journal of Obstetrics and Gynecology 2013;3(9):41–50. DOI: 10.4236/ojog.2013.39A006.
  11. Kumar S, Gattani SC, Baheti AH, Dubey A. Comparison of the performance of APACHE II, SOFA, and mNUTRIC scoring systems in critically ill patients: A 2-year cross-sectional study. Indian J Crit Care Med 2020;24(11):1057–1061. DOI: 10.5005/jp-journals-10071-23549.
  12. Jeon ET, Lee HJ, Park TY, Jin KN, Ryu B, Lee HW, et al. Machine learning-based prediction of in-ICU mortality in pneumonia patients. Sci Rep 2023;13(1):11527. DOI: 10.1038/s41598-023-38765-8.
  13. Alberda C, Gramlich L, Jones N, Jeejeebhoy K, Day AG, Dhaliwal R, et al. The relationship between nutritional intake and clinical outcomes in critically ill patients: Results of an international multicenter observational study. Intensive Care Med 2009;35(10):1728–1737. DOI: 10.1007/s00134-009-1567-4.
  14. Morton SC, Adams JL, Suttorp MJ, Shekelle PG. Meta-regression approaches: What, Why, when, and how? Rockville (MD): Agency for healthcare research and quality (US); 2004. Report No.: 04-0033. PMID: 20734524.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.