Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 28 , ISSUE 5 ( May, 2024 ) > List of Articles

Original Article

Venous Congestion Assessed by Venous Excess Ultrasound (VExUS) and Acute Kidney Injury in Children with Right Ventricular Dysfunction

Rajeswari Natraj, Anu Kirthiga Bhaskaran, Philippe Rola, Korbin Haycock, Matthew TT Siuba, Suchitra Ranjit

Keywords : Acute kidney injury, Children, Right ventricular dysfunction, Venous congestion, Venous excess ultrasound

Citation Information : Natraj R, Bhaskaran AK, Rola P, Haycock K, Siuba MT, Ranjit S. Venous Congestion Assessed by Venous Excess Ultrasound (VExUS) and Acute Kidney Injury in Children with Right Ventricular Dysfunction. Indian J Crit Care Med 2024; 28 (5):447-452.

DOI: 10.5005/jp-journals-10071-24705

License: CC BY-NC 4.0

Published Online: 30-04-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Background: Right ventricular dysfunction (RVD) is a complication following congenital cardiac surgery in children and can lead to systemic venous congestion, low cardiac output, and organ dysfunction. Venous congestion can be transmitted backwards and adversely affect encapsulated organs such as the kidneys. Primary objective: To investigate the association between systemic venous congestion, as estimated by Venous Excess Ultrasound (VExUS), and the occurrence of acute kidney injury (AKI) in children with RVD following congenital heart surgery. Secondary objectives included comparing changes in VExUS scores after initiating treatment for RVD and venous congestion. Methods and results: This was a prospective observational study in children with RVD. The VExUS study was performed on day 1, day 2, and day 3 and categorized as VExUS-1, VExUS-2, and VExUS-3. Among 43 patients with RVD and dilated inferior vena cava, 19/43 (44%), 10/43 (23%), and 12/43 (28%) were VExUS-2 and VExUS-3, respectively. There was an association between severe RVD and elevated pulmonary artery systolic pressures and a VExUS score >2. A significant association was observed between central venous pressure (CVP) measurements and VExUS. Among 31 patients with a high VExUS score >2, 18 (58%) had AKI. Additionally, improvement in CVP and fluid balance was associated with improving VExUS scores following targeted treatment for RVD. Conclusion: VExUS serves as a valuable bedside tool for diagnosing and grading venous congestion through ultrasound Doppler. An elevated VExUS score was associated with the occurrence of AKI, and among the components of VExUS, portal vein pulsatility may be useful as a predictor of AKI.


PDF Share
  1. Zaidi M, Rahman AJ, Haque A, Sadqani S, Maheshwari PK. Frequency of cardiorenal syndrome type-I in hospitalized children with acute heart failure in a tertiary-care hospital. J Coll Phys Surg Pak 2014;24(8):577–580. PMID: 25149838.
  2. Cruces P, Salas C, Lillo P, Salomon T, Lillo F, Hurtado DE. The renal compartment: A hydraulic view. Intensive Care Med Exp 2014;2(1):1–9. DOI: 10.1186/s40635-014-0026-x.
  3. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 2009;53(7):589–596. DOI: 10.1016/j.jacc.2008.05.068.
  4. Beaubien-Souligny W, Benkreira A, Robillard P, Bouabdallaoui N, Chassé M, Desjardins G, et al. Alterations in portal vein flow and intrarenal venous flow are associated with acute kidney injury after cardiac surgery: A prospective observational cohort study. J Am Heart Assoc 2018;7(19):e009961. DOI: 10.1161/JAHA.118.009961.
  5. Viana-Rojas JA, Argaiz E, Robles-Ledesma M, Arias-Mendoza A, Nájera-Rojas NA, Alonso-Bringas AP, et al. Venous excess ultrasound score and acute kidney injury in patients with acute coronary syndrome. Eur Heart J Acute Cardiovasc Care 2023;12(7):413–419. DOI: 10.1093/ehjacc/zuad048.
  6. Mannarino S, Bulzomì P, Codazzi AC, Rispoli GA, Tinelli C, De Silvestri A, et al. Inferior vena cava, abdominal aorta, and IVC-to-aorta ratio in healthy Caucasian children: Ultrasound Z-scores according to BSA and age. J Cardiol 2019;74(4):388–393. DOI: 10.1016/j.jjcc.2019.02.021.
  7. Beaubien-Souligny W, Rola P, Haycock K, Bouchard J, Lamarche Y, Spiegel R, et al. Quantifying systemic congestion with point-of-care ultrasound: Development of the venous excess ultrasound grading system. Ultrasound Journal [Internet] 2020;12(1):16. DOI: 10.1186/s13089-020-00163-w.
  8. Mah K, Mertens L. Echocardiographic assessment of right ventricular function in paediatric heart disease: A practical clinical approach. CJC Pediatr Congenit Heart Dis 2022;1(3):136–157. DOI: 10.1016/j.cjcpc..2022.05.002.
  9. Koestenberger M, Ravekes W, Everett AD, Stueger HP, Heinzl B, Gamillscheg A, et al. Right ventricular function in infants, children and adolescents: Reference values of the tricuspid annular plane systolic excursion (TAPSE) in 640 healthy patients and calculation of z score values. J Am Soc Echocardiogr 2009;22(6):715–719. DOI: 10.1016/j.echo.2009.03.026.
  10. Jone PN, Ivy DD. Echocardiography in pediatric pulmonary hypertension. Front Pediatr 2014;2:1–15. DOI: 10.3389/fped.2014. 00124.
  11. Santens B, de Bruaene A Van, de Meester P, D'Alto M, Reddy S, Bernstein D, et al. Diagnosis and treatment of right ventricular dysfunction in congenital heart disease. Cardiovasc Diagn Ther 2020;10(5):1625–1645. DOI: 10.21037/cdt-20-370.
  12. Park MK. Non invasive techniques In: Pediatric Cardiology for Practitioners. 5th ed. Elsevier Saunders, Philadelphia, PA. 2008, pp. 81–107.
  13. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 2007;71(10):1028–1035. DOI: 10.1038/sj.ki.5002231.
  14. Schwartz GJ, Feld LG, Langford DJ, Bronx NY. A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr 1984;104(6):849–854. DOI: 10.1016/s0022-3476(84) 80479-5.
  15. Lex DJ, Tóth R, Cserép Z, Alexander SI, Breuer T, Sápi E, et al. A comparison of the systems for the identification of postoperative acute kidney injury in pediatric cardiac patients. Ann Thorac Surg 2014;97(1):202–210. DOI: 10.1016/j.athoracsur.2013.09.014
  16. Cho YK, Ma JS. Right ventricular failure in congenital heart disease. Korean J Pediatr 2013;56(3):101–106. DOI: 10.3345/kjp.2013.56. 3.101.
  17. Beaubien-Souligny W, Eljaiek R, Fortier A, Lamarche Y, Liszkowski M, Bouchard J, et al The association between pulsatile portal flow and acute kidney injury after cardiac surgery: A retrospective cohort study. J Cardiothorac Vasc Anesth 2018;32(4):1780–1787. DOI: 10.1053/j.jvca.2017.11.030.
  18. Grønlykke L, Ravn HB, Gustafsson F, Hassager C, Kjaergaard J, Nilsson JC. Right ventricular dysfunction after cardiac surgery–diagnostic options. Vol. 51, Scand Cardiovas J 2017;51(2):114–121. DOI: 10.1080/14017431.2016.1264621.
  19. Grist G, Whittaker C, Merrigan K, Fenton J, Worrall E, O'brien J, et al. The correlation of fluid balance changes during cardiopulmonary bypass to mortality in pediatric and congenital heart surgery patients. J Extra Corpor Techno 2011;43(4):215–226. PMID: 22416601.
  20. Whitehead EH, Thayer K, Burkhoff D, Uriel N, Ohman EM, O'Neill W, et al. Elevated central venous pressure as a trigger for right heart failure evaluation in patients receiving left-sided mechanical support for cardiogenic shock. J Card Fail 2020;26(10):S55. DOI: https://doi.org/10.1016/j.cardfail.2020.09.161.
  21. Menéndez-Suso JJ, Rodríguez-Álvarez D, Sánchez-Martín M. Feasibility and utility of the venous excess ultrasound score to detect and grade central venous pressure elevation in critically ill children. J Ultrasound Med 2023;42(1):211–220. DOI: 10.1002/jum.16057.
  22. Van den Eynde J, Salaets T, Louw JJ, Herman J, Breysem L, Vlasselaers D, et al. Persistent markers of kidney injury in children who developed acute kidney injury after pediatric cardiac surgery: A prospective cohort study. J Am Heart Assoc 2022;11(7):e024266. DOI: 10.1161/JAHA.121.024266.
  23. Skippen PW, Krahn GE. Acute renal failure in children undergoing cardiopulmonary bypass. Crit Care Resus 2005;7(4):286–291. PMID: 16539583.
  24. Winton FR. The influence of venous pressure on the isolated mammalian kidney. J Physiol 9131;72(1):49–61. DOI: 10.1113/jphysiol.1931.sp002761.
  25. Salahuddin N, Sammani M, Hamdan A, Joseph M, Al-Nemary Y, Alquaiz R, et al. Fluid overload is an independent risk factor for acute kidney injury in critically Ill patients: Results of a cohort study. BMC Nephrol 2017;18(1):1–8. DOI: 10.1186/s12882-017-0460-6.
  26. Wong BT, Chan MJ, Glassford NJ, Mårtensson J, Bion V, Chai SY, et al. Mean arterial pressure and mean perfusion pressure deficit in septic acute kidney injury. J Crit Care 2015;30(5):975–981. DOI: 10.1016/j.jcrc.2015.05.003.
  27. Tremblay JA, Beaubien-Souligny W, Elmi-Sarabi M, Desjardins G, Denault AY. Point-of-care ultrasonography to assess portal vein pulsatility and the effect of inhaled milrinone and epoprostenol in severe right ventricular failure: A report of 2 cases. In: 100 Selected Case Reports from Anesthesia and Analgesia. Wolters Kluwer Health 2018. DOI: 10.1213/XAA.0000000000000572.
  28. Sethi SK, Bunchman T, Chakraborty R, Raina R. Pediatric acute kidney injury: New advances in the last decade. Kidney Res Clin Pract 2021;41(1):40–51. DOI: 10.23876/j.krcp.20.074.
  29. Sutherland L, Hittesdorf E, Yoh N, Lai T, Mechling A, Wagener G. Acute kidney injury after cardiac surgery: A comparison of different definitions. Nephrology 2020;25(3):212–218. DOI: 10.1111/nep.13669.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.