Indian Journal of Critical Care Medicine

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 24 , ISSUE 5 ( May, 2020 ) > List of Articles


Current Status and Recommendations in Multimodal Neuromonitoring

Keywords : Brain tissue oxygen, Cerebral metabolism, Data integration, Quantitative EEG

Citation Information : Current Status and Recommendations in Multimodal Neuromonitoring. Indian J Crit Care Med 2020; 24 (5):353-360.

DOI: 10.5005/jp-journals-10071-23431

License: CC BY-NC 4.0

Published Online: 28-07-2020

Copyright Statement:  Copyright © 2020; The Author(s).


Every patient in neurocritical care evolves through two phases. Acute pathologies are addressed first. These include trauma, hemorrhagic or ischemic stroke, or neuroinfection. Soon after, the concentration shifts to identifying secondary pathologies like fever, seizures, and ischemia, which may exacerbate the brain injury. Frequent bedside examinations are not sufficient for timely detection and prevention of secondary brain injury (SBI) as per the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care. Multimodality monitoring (MMM) can help in tailoring treatment decisions to prevent such a brain injury. Multimodal neuromonitoring involves data-guided therapeutic interventions by employing various tools and data integration to understand brain physiology. Monitors provide real-time information on cerebral hemodynamics, oxygenation, metabolism, and electrophysiology. The monitors may be invasive/noninvasive and global/regional. We have reviewed such technologies in this write-up. Novel themes like bioinformatics, clinical research, and device development will also be discussed.

  1. Lara LR, Püttgen HA. Multimodality monitoring in the neurocritical care unit. Continuum: Lifelong Learn Neurol 2018;24(6):1776–1788.
  2. Vespa P, Menon D, Le Roux P. Participants in the international multi-disciplinary consensus conference on multimodality monitoring. the international multi-disciplinary consensus conference on multimodality monitoring: future directions and emerging technologies. Neurocrit Care 2014;21(Suppl 2):S270–S281. DOI: 10.1007/s12028-014-0049-x.
  3. Tasneem N, Samaniego EA, Pieper C, Leira EC, Adams HP, Hasan D, et al. Brain multimodality monitoring: a new tool in neurocritical care of comatose patients. Critical care research and practice 2017;2017:6097265.
  4. Hemphill JC, Andrews P, De Georgia M. Multimodal monitoring and neurocritical care bioinformatics. Nat Rev Neurol 2011;7(8):451–460. DOI: 10.1038/nrneurol.2011.101.
  5. Kochanek PM, Clark RS, Ruppel RA, Adelson PD, Bell MJ, Whalen MJ, et al. Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: Lessons learned from the bedside. Pediat Criti Care Med 2000;1(1):4–19. DOI: 10.1097/00130478-200007000-00003.
  6. Lazaridis C, Robertson CS. The role of multimodal invasive monitoring in acute traumatic brain injury. Neurosurg Clin 2016;27(4):509–517. DOI: 10.1016/
  7. Goyal K, Khandelwal A, Kedia S. Multimodal neuromonitoring: current scenario in neurocritical care. J Neuroanaesthesiol Criti Care 2019;6(02):062–071. DOI: 10.1055/s-0039-1692863.
  8. Mokri B. The Monro–Kellie hypothesis: applications in CSF volume depletion. Neurol 2001;56(12):1746–1748. DOI: 10.1212/wnl.56.12.1746.
  9. Miller JD, Becker DP, Ward JD, Sullivan HG, Adams WE, Rosner MJ. Significance of intracranial hypertension in severe head injury. J Neurosurg 1977;47(4):503–516. DOI: 10.3171/jns.1977.47.4.0503.
  10. Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy G, et al. The international multidisciplinary consensus conference on multimodality monitoring in neurocritical care: a list of recommendations and additional conclusions: a statement for healthcare professionals from the neurocritical care society and the European Society of Intensive Care Medicine. Neurocrit Care 2014;21(Suppl 2):S282–S296. DOI: 10.1007/s12028-014-0077-6.
  11. Balestreri M, Czosnyka M, Steiner LA, Schmidt E, Smielewski P, Matta B, et al. Intracranial hypertension: what additional information can be derived from ICP waveform after head injury? Acta Neurochir (Wien) 2004;146(2):131–141. DOI: 10.1007/s00701-003-0187-y.
  12. Prabhakar H, Sandhu K, Bhagat H, Durga P, Chawla R. Current concepts of optimal cerebral perfusion pressure in traumatic brain injury. J Anaesthesiol Clin Pharmacol 2014;30(3):318–327. DOI: 10.4103/0970-9185.137260.
  13. Brain Trauma Foundation. American association of neurological surgeons, congress of neurological surgeons, et al. guidelines for the management of severe traumatic brain injury. VII. intracranial pressure monitoring technology. J Neurotrauma 2007;24(Suppl 1):S45–S54. DOI: 10.1089/neu.2007.9989.
  14. Fried HI, Nathan BR, Rowe AS, Zabramski JM, Andaluz N, Bhimraj A, et al. The insertion and management of external ventricular drains: an evidence-based consensus statement. Neurocrit Care 2016;24(1):61–81. DOI: 10.1007/s12028-015-0224-8.
  15. Vora YY, Suarez-Almazor M, Steinke DE, Martin ML, Findlay JM. Role of transcranial doppler monitoring in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery 1999;44(6):1237–1248. DOI: 10.1227/00006123-199906000-00039.
  16. Robba C, Bacigaluppi S, Cardim D, Donnelly J, Bertuccio A, Czosnyka M. Noninvasive assessment of intracranial pressure. Acta Neurol Scand 2016;134(1):4–21. DOI: 10.1111/ane.12527.
  17. Roh D, Park S. Brain multimodality monitoring: updated perspectives. Curr Neurol Neurosci Rep 2016;16(6):56. DOI: 10.1007/s11910-016-0659-0.
  18. Korbakis G, Vespa PM. Multimodal neurologic monitoring. In Handbook of clinical neurology, vol. 140. Elsevier; 2017. pp. 91–105.
  19. Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg 1995;83(6):949–962. DOI: 10.3171/jns.1995.83.6.0949.
  20. Aries MJH, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8): 2456–2463. DOI: 10.1097/CCM.0b013e3182514eb6.
  21. Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 2002;30(4):733–738. DOI: 10.1097/00003246-200204000- 00002.
  22. Robertson CS, Valadka AB, Hannay HJ, Contant CF, Gopinath SP, Cormio M, et al. Prevention of secondary ischemic insults after severe head injury. Crit Care Med 1999;27(10):2086–2095. DOI: 10.1097/00003246-199910000-00002.
  23. Karamanos E, Teixeira PG, Sivrikoz E, Varga S, Chouliaras K, Okoye O, et al. Intracranial pressure versus cerebral perfusion pressure as a marker of outcomes in severe head injury: a prospective evaluation. The American Journal of Surgery 2014;208(3):363–371. DOI: 10.1016/j.amjsurg.2013.10.026.
  24. Zweifel C, Lavinio A, Steiner LA, Radolovich D, Smielewski P, Timofeev I, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus 2008;25(4):E2. DOI: 10.3171/FOC.2008.25.10.E2.
  25. Haitsma IK, Maas AI. Advanced monitoring in the intensive care unit: brain tissue oxygen tension. Curr Opin Crit Care 2002;8(2):115–120. DOI: 10.1097/00075198-200204000-00005.
  26. Rivera-Lara L, Zorrilla-Vaca A, Geocadin RG, Healy RJ, Ziai W, Mirski MA. Cerebral autoregulation-oriented therapy at the bedside: a comprehensive review. Anesthesiology 2017;126(6):1187–1199. DOI: 10.1097/ALN.0000000000001625.
  27. Bullock R, Zauner A, Myseros JS, Marmarou A, Woodward JJ, Young HF. Evidence for prolonged release of excitatory amino acids in severe human head trauma: relationship to clinical events. Ann N Y Acad Sci 1995;765(1):290–297. DOI: 10.1111/j.1749-6632.1995.tb16586.x.
  28. Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg 1997;86(2):241–251. DOI: 10.3171/jns.1997.86.2.0241.
  29. Claassen J, Vespa P. Participants in the international multi-disciplinary consensus conference on multimodality monitoring. Electrophysiologic monitoring in acute brain injury. Neurocrit care 2014;21(Suppl 2):S129–S147. DOI: 10.1007/s12028-014-0022-8.
  30. Szaflarski JP, Rackley AY, Kleindorfer DO, Khoury J, Woo D, Miller R, et al. Incidence of seizures in the acute phase of stroke: a population-based study. Epilepsia 2008;49(6):974–981. DOI: 10.1111/j.1528-1167.2007.01513.x.
  31. DeGiorgio CM, Correale JD, Gott PS, Ginsburg DL, Bracht KA, Smith T, et al. Serum neuron- specific enolase in human status epilepticus. Neurology 1995;45(6):1134–1137. DOI: 10.1212/wnl.45.6.1134.
  32. Rabinowicz AL, Correale JD, Bracht KA, Smith TD, DeGiorgio CM. Neuron-specific enolase is increased after nonconvulsive status epilepticus. Epilepsia 1995;36(5):475–479. DOI: 10.1111/j.1528-1157.1995.tb00489.x.
  33. Vespa PM, Miller C, McArthur D, Eliseo M, Etchepare M, Hirt D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med 2007;35(12):2830–2836. DOI: 10.1097/01.CCM.0000295667.66853.BC.
  34. Laccheo I, Sonmezturk H, Bhatt AB, Tomycz L, Shi Y, Ringel M, et al. Non-convulsive status epilepticus and non-convulsive seizures in neurological ICU patients. Neurocrit Care 2015;22(2):202–211. DOI: 10.1007/s12028-014-0070-0.
  35. Citerio G, Oddo M, Taccone FS. Recommendations for the use of Multimodal monitoring in the neurointensive care unit. Curr Opin Crit Care 2015;21(2):113–119. DOI: 10.1097/MCC.0000000000000179.
  36. Hartings JA, Bullock MR, Okonkwo DO, Murray LS, Murray GD, Fabricius M, et al. Co-operative study on brain injury depolarisations. Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study. Lancet Neurol 2011;10(12):1058–1064. DOI: 10.1016/S1474-4422(11)70243-5.
  37. DeLorenzo RJ, Waterhouse EJ, Towne AR, Boggs JG, Ko D, DeLorenzo GA, et al. Persistent nonconvulsive status epilepticus after the control of convulsive status epilepticus. Epilepsia 1998;39(8):833–840. DOI: 10.1111/j.1528-1157.1998.tb01177.x.
  38. Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, et al. Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care. Neurocrit Care 2014;21(2):1–26. DOI: 10.1007/s12028-014-0041-5.
  39. Stuart RM, Waziri A, Weintraub D, Schmidt MJ, Fernandez L, Helbok R, et al. Intracortical EEG for the detection of vasospasm in patients with poor-grade subarachnoid hemorrhage. Neurocrit Care 2010;13(3):355–358. DOI: 10.1007/s12028-010-9414-6.
  40. Hebb MO, McArthur DL, Alger J, Etchepare M, Glenn TC, Bergsneider M, et al. Impaired percent alpha variability on continuous electroencephalography is associated with thalamic injury and predicts poor long-term outcome after human traumatic brain injury. J Neurotrauma 2007;24(4):579–590. DOI: 10.1089/neu.2006.0146.
  41. Logi F, Pasqualetti P, Tomaiuolo F. Predict recovery of consciousness in post-acute severe brain injury: the role of EEG reactivity. Brain Inj 2011;25(10):972–979. DOI: 10.3109/02699052.2011.589795.
  42. Gavvala J, Abend N, LaRoche S, Hahn C, Herman ST, Claassen J, et al. Critical care EEG monitoring research consortium (CCEMRC). continuous EEG monitoring: a survey of neurophysiologists and neurointensivists. Epilepsia 2014;55(11):1864–1871. DOI: 10.1111/epi.12809.
  43. Claassen J, Mayer SA. Continuous electroencephalographic monitoring in neurocritical care. Curr Neurol Neurosci Rep 2002;2(6):534–540. DOI: 10.1007/s11910-002-0042-1.
  44. Singh G. Somatosensory evoked potential monitoring. J Neuroanaesth Crit Care 2016;3(04):97–104. DOI: 10.4103/2348-0548.174745.
  45. Stone JL, Fino J, Vannemreddy P, Charbel F. Modified brainstem auditory evoked responses in patients with nonbrainstem compressive cerebral lesions. Acta Neurochir Suppl 2012;114:81–85. DOI: 10.1007/978-3-7091-0956-4_14.
  46. Zhang Y, Wang M, Su YY. The role of middle latency evoked potentials in early prediction of favorable outcomes among patients with severe ischemic brain injuries. J Neurol Sci 2014;345(1-2):112–117. DOI: 10.1016/j.jns.2014.07.021.
  47. Wartenberg KE, Schmidt JM, Mayer SA. Multimodality monitoring in neurocritical care. Crit Care Clin 2007;23(3):507–538. DOI: 10.1016/j.ccc.2007.06.002.
  48. Bhatia A, Gupta AK. Neuromonitoring in the intensive care unit. II. Cerebral oxygenation monitoring and microdialysis. Intensive Care Med 2007;33(8):1322–1328. DOI: 10.1007/s00134-007-0660-9.
  49. Cruz J. On-line monitoring of global cerebral hypoxia in acute brain injury: relationship to intracranial hypertension. J Neurosurg 1993;79(2):228–233. DOI: 10.3171/jns.1993.79.2.0228.
  50. Timofeev I, Carpenter KLH, Nortje J, Al-Rawi PG, O'Connell MT, Czosnyka M, et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 2011;134(Pt 2):484–494. DOI: 10.1093/brain/awq353.
  51. Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 2005;22(1):3–41. DOI: 10.1089/neu.2005.22.3.
  52. Enblad P, Valtysson J, Andersson J, Lilja A, Valind S, Antoni G, et al. Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. Journal of Cerebral Blood Flow Metabol 1996;16(4):637–644. DOI: 10.1097/00004647-199607000-00014.
  53. Zauner A, Doppenberg E, Woodward JJ, Allen C, Jebraili S, Young HF, et al. Multiparametric continuous monitoring of brain metabolism and substrate delivery in neurosurgical patients. Neurol Res 1997;19(3):265–273. DOI: 10.1080/01616412.1997.11740812.
  54. Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C. Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J Neurosurg 2010;113(3):564–570. DOI: 10.3171/2009.12.JNS09689.
  55. Nilsson OG, Brandt L, Ungerstedt U, Säveland H. Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurg 1999;45(5):1176–1185. DOI: 10.1097/00006123-199911000-00032.
  56. Hinzman JM, Wilson JA, Mazzeo AT, Bullock MR, Hartings JA. Excitotoxicity and metabolic crisis are associated with spreading depolarizations in severe traumatic brain injury patients. J Neurotrauma 2016;33(19):1775–1783. DOI: 10.1089/neu.2015. 4226.
  57. Vespa P, Prins M, Ronne-Engstrom E, Caron M, Shalmon E, Hovda DA, et al. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg 1998;89(6):971–982. DOI: 10.3171/jns.1998.89.6.0971.
  58. Hillered L, Valtysson J, Enblad P, Persson L. Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol, Neurosurg Psychiat 1998;64(4): 486–491. DOI: 10.1136/jnnp.64.4.486.
  59. Paraforou T, Paterakis K, Fountas K, Paraforos G, Chovas A, Tasiou A, et al. Cerebral perfusion pressure, microdialysis biochemistry and clinical outcome in patients with traumatic brain injury. BMC Res Notes 2011;4(1):540. DOI: 10.1186/1756-0500-4-540.
  60. Schulz MK, Wang LP, Tange M, Bjerre P. Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 2000;93(5):808–814. DOI: 10.3171/jns.2000.93.5. 0808.
  61. Skjøth-Rasmussen J, Schulz M, Kristensen SR, Bjerre P. Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 2004;100(1):8–15. DOI: 10.3171/jns.2004.100.1.0008.
  62. Unterberg AW, Sakowitz OW, Sarrafzadeh AS, Benndorf G, Lanksch WR. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg 2001;94(5):740–749. DOI: 10.3171/jns.2001.94.5.0740.
  63. Belli A, Sen J, Petzold A, Russo S, Kitchen N, Smith M. Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir (Wien) 2008;150(5):461–470. DOI: 10.1007/s00701-008-1580-3.
  64. Schlenk F, Graetz D, Nagel A, Schmidt M, Sarrafzadeh AS. Insulin-related decrease in cerebral glucose despite normoglycemia in aneurysmal subarachnoid hemorrhage. Crit Care 2008;12(1):R9. DOI: 10.1186/cc6776.
  65. Kinoshita K, Moriya T, Utagawa A, Sakurai A, Mukoyama T, Furukawa M, et al. Change in brain glucose after enteral nutrition in subarachnoid hemorrhage. J Surg Res 2010;162(2):221–224. DOI: 10.1016/j.jss.2009.06.009.
  66. Vespa PM, McArthur D, O'Phelan K, Glenn T, Etchepare M, Kelly D, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metabol 2003;23(7):865–877. DOI: 10.1097/01.WCB.0000076701.45782.EF.
  67. Oddo M, Schmidt JM, Carrera E, Badjatia N, Connolly ES, Presciutti M, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med 2008;36(12):3233–3238. DOI: 10.1097/CCM.0b013e31818f4026.
  68. Woitzik J, Pinczolits A, Hecht N, Sandow N, Scheel M, Drenckhahn C, et al. Excitotoxicity and metabolic changes in association with infarct progression. Stroke 2014;45(4):1183–1185. DOI: 10.1161/STROKEAHA.113.004475.
  69. Lööv C, Nadadhur AG, Hillered L, Clausen F, Erlandsson A. Extracellular ezrin: a novel biomarker for traumatic brain injury. J Neurotrauma 2015;32(4):244–251. DOI: 10.1089/neu.2014.3517.
  70. Shannon RJ, Carpenter KL, Guilfoyle MR, Helmy A, Hutchinson PJ. Cerebral microdialysis in clinical studies of drugs: pharmacokinetic applications. J Pharmacokinet Pharmacodyn 2013;40(3):343–358. DOI: 10.1007/s10928-013-9306-4.
  71. Oddo M, Villa F, Citerio G. Brain multimodality monitoring: an update. Curr Opin Crit Care 2012;18(2):111–118. DOI: 10.1097/MCC.0b013e32835132a5.
  72. Ponce LL, Pillai S, Cruz J, Li X, Julia H, Gopinath S, et al. Position of probe determines prognostic information of brain tissue PO2 in severe traumatic brain injury. Neurosurgery 2012;70(6):1492–1502. DOI: 10.1227/NEU.0b013e31824ce933.
  73. Oddo M, Bösel J. Participants in the international multidisciplinary consensus conference on multimodality monitoring. monitoring of brain and systemic oxygenation in neurocritical care patients. Neurocrit Care 2014;21(Suppl 2):S103–S120. DOI: 10.1007/s12028-014-0024-6.
  74. Oddo M, Le Roux PD. Brain oxygen. In: Le Roux PD, Levine JM, Koftke WA. Monitoring in Neurocritical Care. Philadelphia, PA: Elsevier; 2013. pp. 348–355.
  75. Kirkpatrick PJ, Smielewski P, Czosnyka M, Pickard JD. Continuous monitoring of cortical perfusion by laser doppler flowmetry in ventilated patients with head injury. J Neurol, Neurosurg Psychiat 1994;57(11):1382–1388. DOI: 10.1136/jnnp.57.11.1382.
  76. Mathieu F, Khellaf A, Thelin EP, Zeiler FA. Continuous thermal diffusion-based cerebral blood flow monitoring in adult traumatic brain injury: a scoping systematic review. J Neurotrauma 2019;36(11):1707–1723. DOI: 10.1089/neu.2018.6309.
  77. Vajkoczy P, Horn P, Thome C, Munch E, Schmiedek P. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg 2003;98(6): 1227–1234. DOI: 10.3171/jns.2003.98.6.1227.
  78. Rosenthal G, Sanchez-Mejia RO, Phan N, Hemphill JC, Martin C, Manley GT. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury. J Neurosurg 2011;114(1):62–70. DOI: 10.3171/2010.6.JNS091360.
  79. Mahajan C, Rath GP, Bithal PK. Advances in neuro-monitoring. Anesth Essays Res 2013;7(3):312–318. DOI: 10.4103/0259-1162.123216.
  80. Rivera-Lara L, Geocadin R, Zorrilla-Vaca A, Healy R, Radzik BR, Palmisano C, et al. Validation of near-infrared spectroscopy for monitoring cerebral autoregulation in comatose patients. Neurocrit Care 2017;27(3):362–369. DOI: 10.1007/s12028-017-0421-8.
  81. Kirkpatrick PJ, Smielewski P, Czosnyka M, Menon DK, Pickard JD. Near-infrared spectroscopy use in patients with head injury. J Neurosurg 1995;83(6):963–970. DOI: 10.3171/jns.1995.83.6.0963.
  82. Weigl W, Milej D, Janusek D, Wojtkiewicz S, Sawosz P, Kacprzak M, et al. Application of optical methods in the monitoring of traumatic brain injury: a review. J Cereb Blood Flow Metab 2016;36(11):1825–1843. DOI: 10.1177/0271678X16667953.
  83. Flechet M, Grandas FG, Meyfroidt G. Informatics in neurocritical care: new ideas for big data. Curr Opin Crit Care 2016;22(2):87–93. DOI: 10.1097/MCC.0000000000000287.
  84. Cummings J, Krsek C, Vermoch K, Matuszewski K. Intensive care unit telemedicine: review and consensus recommendations. Am M Jed Qual 2007;22(4):239–250. DOI: 10.1177/1062860607302777.
  85. Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. New England J Med 2012;367(26):2471–2481. DOI: 10.1056/NEJMoa1207363.
  86. Wollert KC, Meyer GP, Müller-Ehmsen J, Tschöpe C, Bonarjee V, Larsen AI, et al. Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST-2 randomised placebo-controlled clinical trial. Eur Heart J 2017;38(39):2936–2943. DOI: 10.1093/eurheartj/ehx188.
  87. Muthukumar N. Multimodal intraoperative neuromonitoring during surgery for correction of spinal deformity: standard of care or luxury? Neurol India 2017;65(1):80. DOI: 10.4103/0028-3886.198221.
  88. Field MJ, Grigsby J. Telemedicine and remote patient monitoring. JAMA 2002;288(4):423–425. DOI: 10.1001/jama.288.4.423.
  89. Chapman M, Gattas D, Suntharalingam G. Innovations in technology for critical care medicine. Crit Care 2004;8(2):74–76. DOI: 10.1186/cc2843.
  90. Cammarata G, Ristagno G, Cammarata A, Mannanici G, Denaro C, Gullo A. Ocular ultrasound to detect intracranial hypertension in trauma patients. J Trauma Acute Care Surg 2011;71(3):779–781. DOI: 10.1097/TA.0b013e3182220673.
  91. Chen JW, Gombart ZJ, Rogers S, Gardiner SK, Cecil S, Bullock RM. Pupillary reactivity as an early indicator of increased intracranial pressure: the introduction of the neurological pupil index. Surg Neurol Int 2011;2(1):82. DOI: 10.4103/2152-7806.82248.
  92. Smith M. Multimodality neuromonitoring in adult traumatic brain injury: a narrative review. Anesthesiology 2018;128(2):401–415. DOI: 10.1097/ALN.0000000000001885.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.