Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 25 , ISSUE 7 ( July, 2021 ) > List of Articles

BRIEF RESEARCH COMMUNICATION

Direct Measurement of Creatinine Clearance over a Short Interval in Intensive Care Settings

Lawrence SC Law, Elaine AG Lo, Siang F Yeoh

Citation Information : Law LS, Lo EA, Yeoh SF. Direct Measurement of Creatinine Clearance over a Short Interval in Intensive Care Settings. Indian J Crit Care Med 2021; 25 (7):800-802.

DOI: 10.5005/jp-journals-10071-23825

License: CC BY-NC 4.0

Published Online: 07-07-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Background: The definition of acute kidney injury (AKI), based on serum creatinine and urine output, bears significant limitations in intensive care units (ICUs). Serum creatinine has significant lag-time as it needs to be accumulated and stabilized at a new level whereas urine output is affected by diuresis, antidiuresis, and antinatriuresis. Direct measurement of creatinine clearance (CrCldirect = urine creatinine × urine flow rate/serum creatinine) over a short interval (3–6 hours) was explored to identify patients with AKI. Materials and methods: We reanalyzed a previous published dataset. We included 11 patients who had serial daily urine collections over 0 to 3 days of stay in ICU and baseline (day -1) serum creatinine levels. Result: The ratio of CrCldirect on day 0 to baseline creatinine clearance predicted the progression of AKI over the subsequent 1 to 3 days of ICU stay [area under receiver operating characteristic curve = 0.933 and 95% confidence interval (CI) = 0.780–1.000]. Discussion: CrCldirect over a short interval may be an alternative marker of kidney function. Future studies may explore its use to identify patients with AKI who may benefit from early renal replacement therapy.


HTML PDF Share
  1. STARRT-AKI Investigators, Canadian Critical Care Trials Group, the Australian and New Zealand Intensive Care Society Clinical Trials Group, United Kingdom Critical Care Research Group, Canadian Nephrology Trials Network, Irish Critical Care Trials Group, et al. Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury. N Engl J Med 2020;383(3):240–251. DOI: 10.1056/NEJMoa2000741.
  2. Barbar SD, Clere-Jehl R, Bourredjem A, Hernu R, Montini F, Bruyère R, et al. Timing of renal-replacement therapy in patients with acute kidney injury and sepsis. N Engl J Med 2018;379(15):1431–1442. DOI: 10.1056/NEJMoa1803213.
  3. Gaudry S, Hajage D, Schortgen F, Martin-Lefevre L, Pons B, Boulet E, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med 2016;375:122–133. DOI: 10.1056/NEJMoa1603017.
  4. Wald R, Adhikari NK, Smith OM, Weir MA, Pope K, Cohen A, et al. Comparison of standard and accelerated initiation of renal replacement therapy in acute kidney injury. Kidney Int 2015;88(4):897–904. DOI: 10.1038/ki.2015.184.
  5. Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstädt H, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: The ELAIN randomized clinical trial. JAMA 2016;315(20):2190–2199. DOI: 10.1001/jama.2016.5828.
  6. Kellum JA, Lameire N, Aspelin P, Barsoum RS, Burdmann EA, Goldstein SL, et al. Kidney disease: improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2012;2(1):1–138. DOI: 10.1038/kisup.2012.1.
  7. Legrand M, Payen D. Understanding urine output in critically ill patients. Ann Intensive Care 2011;1(1):13. DOI: 10.1186/2110-5820-1-13.
  8. Pasternack A, Kuhlbäck B. Diurnal variations of serum and urine creatine and creatinine. Scand J Clin Lab Invest 1971;27(1):1–7. DOI: 10.3109/00365517109080181.
  9. Sirota JH, Baldwin DS, Villarreal H. Diurnal variations of renal function in man. J Clin Invest 1950;29(2):187–192. DOI: 10.1172/JCI102245.
  10. Koopman MG, Koomen GCM, Krediet RT, De Moor EAM, Hoek FJ, Arisz L. Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci 1989;77(1):105–111. DOI: 10.1042/cs0770105.
  11. Waikar SS, Sabbisetti VS, Bonventre JV. Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int 2010;78(5):486–494. DOI: 10.1038/ki.2010.165.
  12. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16(1):31–41. DOI: 10.1159/000180580.
  13. Sunder S, Jayaraman R, Mahapatra HS, Sathi S, Ramanan V, Kanchi P, et al. Estimation of renal function in the intensive care unit: the covert concepts brought to light. J Intensive Care 2014;2(1):31. DOI: 10.1186/2052-0492-2-31.
  14. Kassirer JP. Clinical evalution of kidney function: Glomerular function. New Engl J Med 1971;285:385–399. DOI: 10.1056/NEJM197108122850706.
  15. Rewa OG, Bagshaw SM, Wang X, Wald R, Smith O, Shapiro J, et al. The furosemide stress test for prediction of worsening acute kidney injury in critically ill patients: a multicenter, prospective, observational study. J Crit Care 2019;52:109–114. DOI: 10.1016/j.jcrc.2019.04.011.
  16. Chen JJ, Chang CH, Huang YT, Kuo G. Furosemide stress test as a predictive marker of acute kidney injury progression or renal replacement therapy: a systemic review and meta-analysis. Crit Care 2020;24(1):202. DOI: 10.1186/s13054-020-02912-8.
  17. Joffe M, Hsu CY, Feldman HI, Weir M, Landis JR, Hamm LL, et al. Variability of creatinine measurements in clinical laboratories: results from the CRIC study. Am J Nephrol 2010;31(5):426–434. DOI: 10.1159/000296250.
  18. Luis-Lima S, Porrini E. An overview of errors and flaws of estimated GFR versus true GFR in patients with diabetes mellitus. Nephron 2017;136(4):287–291. DOI: 10.1159/000453531.
  19. Killeen C, Meehan T, Dohnal J, Leikin JB. Pseudorenal insufficiency with isopropyl alcohol injection. American Journal of Therapeutics 2011;18(4):e113–e116. DOI: 10.1097/MJT.0b013e3181c960cb.
  20. Fernandez-Prado R, Castillo-Rodriguez E, Velez-Arribas FJ, Gracia-Iguacel C, Ortiz A. Creatinine clearance is not equal to glomerular filtration rate and Cockcroft-Gault equation is not equal to CKD-EPI collaboration equation. Am J Med 2016;129(12):1259–1263. DOI: 10.1016/j.amjmed.2016.08.019.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.