Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 23 , ISSUE 12 ( December, 2019 ) > List of Articles

RESEARCH ARTICLE

Comparison of Prognostic Models in Acute Liver Failure: Decision is to be Dynamic

Anamika Sharma, Samba SR Pasupuleti, Prashant M Agarwal

Keywords : Assessment, Liver injury, Net benefit, Scoring systems

Citation Information : Sharma A, Pasupuleti SS, Agarwal PM. Comparison of Prognostic Models in Acute Liver Failure: Decision is to be Dynamic. Indian J Crit Care Med 2019; 23 (12):574-581.

DOI: 10.5005/jp-journals-10071-23294

License: CC BY-NC 4.0

Published Online: 01-08-2014

Copyright Statement:  Copyright © 2019; The Author(s).


Abstract

Background and aims: Acute liver failure (ALF) is a rare disease entity with a high mortality. Management is dependent on accurate prognostication. Materials and methods: One hundred consecutive patients presenting with ALF were prospectively evaluated. The King's college criteria (KCC), ALF early dynamic model (ALFED), sequential organ failure assessment (SOFA) score, and acute physiology and health evaluation II (APACHE II) scores were compared to predict mortality. Results: There were significant differences in means of all the scores between survivors and nonsurvivors. The SOFA 48 hours had the highest area under receiver operating characteristic curve (AUC) (0.857) closely followed by the ALFED score (0.844). The optimal cutoff for the SOFA score at 48 hours to predict subsequent survival outcome is ≥10 and for the ALFED score is ≥5. Sequential organ failure assessment 48 hours had a good sensitivity of 87%, and the ALFED score showed a good specificity of 84%. The decision curve analysis showed that between a threshold probability of 0.13 and 0.6, use of the SOFA score provided the maximum net benefit and at threshold probabilities of >0.6, the use of ALFED score provided the maximum clinical benefit. Conclusion: Dynamic scoring results in better prognostication in ALF. The SOFA 48 hours and ALFED score have good prognostication value in nonacetaminophen-induced liver failure.


HTML PDF Share
  1. O'Grady JG. Prognostication in acute liver failure: a tool or an anchor? Liver Transpl 2007;13(6):786–787. DOI: 10.1002/lt.21159.
  2. O'Grady JG, Alexander GJ, Hallyar KM, Williams R. Early indicators of prognosis in fulminant hepatic failure. Gastroenterology 1989;97(2):439–445. DOI: 10.1016/0016-5085(89)90081-4.
  3. Mishra A, Rustgi V. Prognostic models in acute liver failure. Clin Liver Dis 2018;22(2):375–388. DOI: 10.1016/j.cld.2018.01.010.
  4. Bernal W, Hyyrylainen A, Gera A, Audimoolam VK, McPhail MJ, Auzinger G, et al. Lessons from look-back in acute liver failure? A single centre experience of 3300 patients. J Hepatol 2013;59(1):74–80. DOI: 10.1016/j.jhep.2013.02.010.
  5. Anand AC, Nightingale P, Neuberger JM. Early indicators of prognosis in fulminant hepatic failure: an assessment of the king's criteria. J Hepatol 1997;26(1):62–68. DOI: 10.1016/S0168-8278(97)80010-4.
  6. Bernuau J, Goudeau A, Poynard T, Dubois F, Lesage G, Yvonnet B, et al. Multivariate analysis of prognostic factors in fulminant hepatitis B. Hepatology 1986;6(4):648–651. DOI: 10.1002/hep.1840060417.
  7. Bernuau J, Benhamou JP. Fulminant and subfulminant liver failure. In: McIntyre N Benhamou JP, Bircher J, Rizzeto M, Rodes J, ed. Oxford Textbook of Clinical Hepatology. Oxford: Oxford Medical Publications; 1991. pp. 923–942.
  8. Dhiman RK, Seth AK, Jain S, Chawla YK, Dilawari JB. Prognostic evaluation of early indicators in fulminant hepatic failure by multivariate analysis. Dig Dis Sci 1998;43(6):1311–1316. DOI: 10.1023/A:1018876328561.
  9. Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, ter Borg PC. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 2000;31(4):864–871. DOI: 10.1053/he.2000.5852.
  10. Wiesner R, Edwards E, Freeman R, Harper A, Kim R, Kamath P, et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 2003;124(1):91–96. DOI: 10.1053/gast.2003.50016.
  11. Dhiman RK, Jain S, Maheshwari U, Bhalla A, Sharma N, Ahluwalia J, et al. Early indicators of prognosis in fulminant hepatic failure: an assessment of the model for end-stage liver disease (MELD) and king's college hospital criteria. Liver Transplant 2007;13(6):814–821. DOI: 10.1002/lt.21050.
  12. Lahariya C, Subramanya BP, Sosler S. An assessment of hepatitis B vaccine introduction in India: lessons for roll out and scale up of new vaccines in immunization programs. Indian J Public Health 2013;57(1):8–14. DOI: 10.4103/0019-557X.111357.
  13. Aggarwal R, Babu JJ, Hemalatha R, Reddy AV, Sharma D, Kumar T. Effect of inclusion of hepatitis B vaccine in childhood immunization program in India: a retrospective cohort study. Indian Pediatr 2014;51(11):875–889. DOI: 10.1007/s13312-014-0520-y.
  14. Bernal W, Williams R. Beyond KCH selection and options in acute liver failure. Hepatol Int 2018;12(3):204–213. DOI: 10.1007/s12072-018-9869-7.
  15. Kumar R, Shalimar, Sharma H, Goyal R, Kumar A, Khanal S, et al. Prospective derivation and validation of early dynamic model for predicting outcome in patients with acute liver failure. Gut 2012;;61(7):1068–1075. DOI: 10.1136/gutjnl-2011-301762.
  16. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. For working group on sepsis-related problems of the European society of intensive care medicine. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Med 1996;22(7):707–710. DOI: 10.1007/BF01709751.
  17. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 1985;13(10):818–829. DOI: 10.1097/00003246-198510000-00009.
  18. Cholongitas E, Senzolo M, Patch D, Kwong K, Nikolopoulou V, Leandro G, et al. Risk factors, sequential organ failure assessment and model for end-stage liver disease scores for predicting short term mortality in cirrhotic patients admitted to intensive care unit. Aliment Pharmacol Ther 2006;23(7):883–893. DOI: 10.1111/j.1365-2036.2006.02842.x.
  19. Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983;148(3):839–843. DOI: 10.1148/radiology.148.3.6878708.
  20. Lemeshow S, Hosmer DW Jr. A review of goodness of fit statistics for use in the development of logistic regression models. Am J Epidemiol 1982;115(1):92–106. DOI: 10.1093/oxfordjournals.aje.a113284.
  21. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making 2006;26(6):565–574. DOI: 10.1177/0272989X06295361.
  22. Butterworth RF. Pathogenesis of hepatic encephalopathy and brain edema in acute liver failure. J Clin Exp Hepatol 2015;5(Suppl 1):S96–S103. DOI: 10.1016/j.jceh.2014.02.004.
  23. Panagariya A. The challenges and innovative solutions to rural health dilemma. Ann Neurosci 2014;21(4):125–127. DOI: 10.5214/ans.0972.7531.210401.
  24. Bassi A, John O, Praveen D, Maulik PK, Panda R, Jha V. Current status and future directions of mHealth interventions for health system strengthening in India: systematic review. JMIR Mhealth Uhealth 2018;6(10):e11440. DOI: 10.2196/11440.
  25. Sahu M, Grover A, Joshi A. Role of mobile phone technology in health education in Asian and African countries: a systematic review. Int J Electron Healthc 2014;7(4):269–286. DOI: 10.1504/IJEH.2014.064327.
  26. Mendizabal M, Silva MO. Liver transplantation in acute liver failure: a challenging scenario. World J Gastroenterol 2016;22(4):1523–1531. DOI: 10.3748/wjg.v22.i4.1523.
  27. Bernal W, Wang Y, Maggs J, Willars C, Sizer E, Auzinger G, et al. Development and validation of a dynamic outcome prediction model for paracetamol-induced acute liver failure: a cohort study. Lancet Gastroenterol Hepatol 2016;1(3):217–225. DOI: 10.1016/S2468-1253(16)30007-3.
  28. Figorilli F, Putignano A, Roux O, Houssel-Debry P, Francoz C, et al. Development of an organ failure score in acute liver failure for transplant selection and identification of patients at high risk of futility. PLoS ONE 2017;5(12):12. DOI: 10.1371/journal.pone.0188151.
  29. Shalimar, Sonika U, Kedia S, Mahapatra SJ, Nayak B, Yadav DP, et al. Comparison of dynamic changes among various prognostic scores in viral hepatitis-related acute liver failure. Ann Hepatol 2018;17(3): 403–412. DOI: 10.5604/01.3001.0011.7384.
  30. Schiødt FV, Chung RT, Schilsky ML, Hay JE, Christensen E, et al. Acute liver failure study group. Outcome of acute liver failure in the elderly. Liver Transpl 2009;15(11):1481–1487. DOI: 10.1002/lt.21865.
  31. Cholongitas E, Theocharidou E, Vasianopoulou P, Betrosian A, Shaw S, Patch D, et al. Comparison of the sequential organ failure assessment score with the king's college hospital criteria and the model for end-stage liver disease score for the prognosis of acetaminophen-induced acute liver failure. Liver Transpl 2012;18(4):405–412. DOI: 10.1002/lt.23370.
  32. Mitchell I, Bihari D, Chang R, Wendon J, Williams R. Earlier identification of patients at risk from acetaminophen-induced acute liver failure. Crit Care Med 1998;26(2):279–284. DOI: 10.1097/00003246-199802000-00026.
  33. Scott TR, Kronsten VT, Hughes RD, Shawcross DL. Pathophysiology of cerebral oedema in acute liver failure. World J Gastroenterol 2013;19(48):9240–9255. DOI: 10.3748/wjg.v19.i48.9240.
  34. Coelho S, Fonseca JN, Gameiro J, Jorge S, Velosa J, Lopes JA. Transient and persistent acute kidney injury in acute liver failure. J Nephrol 2018;32(2):289–296. DOI: 10.1007/s40620-018-00568-w.
  35. Deep A, Stewart CE, Dhawan A, Douiri A. Effect of continuous renal replacement therapy on outcome in pediatric acute liver failure. Crit Care Med 2016;44(10):1910–1919. DOI: 10.1097/CCM.0000000000001826.
  36. Larsen FS, Schmidt LE, Bernsmeier C, Rasmussen A, Isoniemi H, Patel VC, et al. High-volume plasma exchange in patients with acute liver failure: an open randomised controlled trial. J Hepatol 2016;64(1): 69–78. DOI: 10.1016/j.jhep.2015.08.018.
  37. Traeger AC, Hübscher M, McAuley JH. Understanding the usefulness of prognostic models in clinical decision-making. J Physiother 2017;63(2):121–125. DOI: 10.1016/j.jphys.2017.01.003.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.