Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 24 , ISSUE 6 ( June, 2020 ) > List of Articles

Pediatric Critical Care

Association of Urinary Albumin:Creatinine Ratio with Outcome of Children with Sepsis

Karan Raheja

Citation Information : Raheja K. Association of Urinary Albumin:Creatinine Ratio with Outcome of Children with Sepsis. Indian J Crit Care Med 2020; 24 (6):465-472.

DOI: 10.5005/jp-journals-10071-23463

License: CC BY-NC 4.0

Published Online: 22-10-2020

Copyright Statement:  Copyright © 2020; The Author(s).


Abstract

Objective: The aim of the study was to investigate the association of urinary albumin:creatinine ratio (ACR) with regard to the outcome of sepsis patients and to study the trends of ACR with severity of disease, organ dysfunction, microcirculation status, the use of inotrope, and mechanical ventilation use, and length of pediatric intensive care unit (PICU) stay. Materials and methods: In the prospective observational study, the patients with varying categories of sepsis admitted in the PICU with stay >24 hours were enrolled consecutively. Urine samples were collected at the time of admission (ACR1), 12 hours (ACR2), and 24 hours (ACR3). Results: One hundred and thirty-eight patients including 56 cases of sepsis, 31 of severe sepsis, 22 of septic shock, and 29 of multiorgan dysfunction syndrome (MODS) cases were analyzed. There were 29 (21%) deaths. ACR (median, IQR) was significantly higher in nonsurvivors [ACR1 198.9 (111.2–329.4) vs 124.5 (59.37–294.5), p 0.03], [ACR2 213.8 (112.5–350) vs 117.8 (62.6–211.9) p 0.008], [ACR3 231.8 (99.9–441.2 vs 114.4 (44.1–240.3), p 0.005]. The ACR is increased progressively with the increasing severity of sepsis (p < 0.001). The performance of ACR operative characteristics was compared with that of PRISM and PELOD scores. In deceased, ACR was significantly correlated with blood pH, lactate, and base deficit. A cutoff value of ACR 102.7 mg/g had sensitivity 86.2%, specificity 40.4%, positive predictive value 27.8%, and negative predictive value 91.7%. The use of inotropes, mechanical ventilation (>48 hours), and mortality was significantly higher in patients with ACR >102 mg/g. The probability of death varied from 17.6 to 19% in the first 24 hours of admission. ACR was significantly cheaper as compared to PRISM score and PELOD score estimations. Conclusion: Urinary ACR, a cost-effective tool, correlates with the severity of sepsis and associated morbidity and mortality in children.


HTML PDF Share
  1. Baue AE, Durham R, Faist E. Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF): Are we winning the battle? Shock 1998;10(2):79–89. DOI: 10.1097/00024382-199808000- 00001.
  2. Davies MG, Hagen PO. Systemic inflammatory response syndrome. Br J Surg 1997;84(7):920–935. DOI: 10.1002/bjs.1800840707.
  3. Fleck A, Hawker F, Wallace PI, Raines G, Trotter J, Ledingham IM, et al. Increased vascular permeability: A major cause of hypoalbuminemia in disease and injury. Lancet 1985;325(8432):781–783. DOI: 10.1016/S0140-6736(85)91447-3.
  4. Zikria BA, Bascom JU. Mechanisms of multiple organ failure. In: Reperfusion Injuries and Clinical Capillary Leak Syndrome Zikria BA, Oz MO, Carlson RW Armonk, NY: Futura; 1994. pp 443–492.
  5. Feldt-Rasmussen B. Microalbuminuria, endothelial dysfunction and cardiovascular risk. Diabetes Metab 2000;26(S4):64–66.
  6. Pedrinelli R, Dell'Omo G, Penno G, Mariani M. Non-diabetic microalbuminuria, endothelial dysfunction and cardiovascular disease. Vasc Med 2001;6(4):257–264. DOI: 10.1177/1358836X0100600410.
  7. Smith FCT, Gosling P, Sanghera K, Green MA, Paterson IS, Shearman CP. Microproteinuria predicts the severity of systemic effects of reperfusion injury following infrarenal aortic aneurysm surgery. Ann Vasc Surg 1994;8(1):1–5. DOI: 10.1007/BF02133398.
  8. Gosling P, Sanghera S, Dickson G. Generalised permeability defect associated with pulmonary impairment in patients following serious trauma. J Trauma 1994;36(4):477–478. DOI: 10.1097/00005373-199404000-00002.
  9. Pallister I, Gosling P, Alpar K, Bradley S. Prediction of posttraumatic adult respiratory distress syndrome by albumin excretion rate eight hours after admission. J Trauma 1997;42(6):1056–1061. DOI: 10.1097/00005373-199706000-00012.
  10. Raffaele DA, Rosario S, Alessandro DF, Marco F. Glomerular permeability and trauma: A correlation between microalbuminuria and injury severity score. Crit Care Med 1999;27(10):2105–2108. DOI: 10.1097/00003246-199910000-00004.
  11. Tisi PV, Shearman CP, Gosling P. Urinary microalbuminuria as a marker for intermittent claudication. Eur J Vasc Surg 1997;13(2):253. DOI: 10.1016/S1078-5884(97)80035-4.
  12. Gosling P, Hughes EA, Reynolds TM, Fox JP. Microalbuminuria is an early response following acute myocardial infarction. Eur Heart J 1991;12(4):508–513. DOI: 10.1093/oxfordjournals.eurheartj.a059931.
  13. Shearman CP, Gosling P, Walker KJ. Is low proteinuria an early predictor of severity of acute pancreatitis? J Clin Pathol 1989;42(11):1132–1135. DOI: 10.1136/jcp.42.11.1132.
  14. Roine I. Microalbuminuria: An index of severity in childhood meningitis. Pediatr Infect Dis J 1993;12(7):584–588. DOI: 10.1097/00006454-199307000-00008.
  15. Wood PR, Gosling P, Cook MC. Microalbuminuria following anaphylaxis with general anaesthesia. Br J Anaesth 2000;84(6): 808–810. DOI: 10.1093/oxfordjournals.bja.a013599.
  16. Mahmud N, Stinson J, O'Connell MA, Mantle TJ, Keeling PW, Feely J, et al. Microalbuminuria in inflammatory bowel disease. Gut 1994;35(11):1599–1604. DOI: 10.1136/gut.35.11.1599.
  17. Basu S, Chaudhuri S, Bhattacharyya M, Chatterjee TK, Todi S, Majumdar A. Microalbuminuria: An inexpensive, noninvasive bedside tool to predict outcome in critically ill patients. Indian Journal of Clinical Biochemistry 2010;25(2):146–152. DOI: 10.1007/s12291-010-0027-9.
  18. Anil AB, Anil M, Yildiz M, Kamit Can F, Bal A, Gokalp G, et al. The importance of microalbuminuria in predicting patient outcome in a PICU. Pediatr Crit Care Med 2014;15(5):e220–e225. DOI: 10.1097/PCC.0000000000000113.
  19. Abid O, Sun Q, Sugimoto K, Mercan D, Vincent JL. Predictive value of microalbuminuria in medical ICU patients: Results of a pilot study. Chest 2001;20(6):1984–1988. DOI: 10.1378/chest.120.6.1984.
  20. Gopal S, Carr B, Nelson P. Does microalbuminuria predict illness severity in critically ill patients on the intensive care unit? A systematic review. Crit Care Med 2006;34(6):1805–1810. DOI: 10.1097/01.CCM.0000217922.75068.EA.
  21. Goldstein B, Giroir B, Adrienne Randolph A. Members of the International Consensus Conference on Pediatric Sepsis International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005;6(1):2–8. DOI: 10.1097/01.PCC.0000149131.72248.E6.
  22. Pollack MM, Ruttiman UE, Getson PR. The pediatric risk of mortality (PRISM) score. Crit Care Med 1988;16(11):1110–1116. DOI: 10.1097/00003246-198811000-00006.
  23. Leteurtre S, Martinot A, Duhamel A, Proulx F, Grandbastien B, Cotting J, et al. Validation of the paediatric logistic organ dysfunction (PELOD) score: prospective, observational, multicentre study. Lancet 2003;362(9379):192–197. DOI: 10.1016/S0140-6736(03)13908-6.
  24. Tsioufis C, Mazaraki A, Dimitriadis K, Stefanidis CJ, Stefanadis C. Microalbuminuria in the paediatric age: current knowledge and emerging questions. Acta Paediatr 2011;100(9):1180–1184. DOI: 10.1111/j.1651-2227.2011.02291.x.
  25. Gaies MG, Gurney JG, Yen AH, Napoli ML, Gajarski RJ, Ohye RG, et al. Vasoactive–inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med 2010;11(2):234–238. DOI: 10.1097/PCC.0b013e3181b806fc.
  26. Gosling P. Microalbuminuria: a sensitive indicator of nonrenal disease? Ann Clin Biochem 1995;32(5):439–441. DOI: 10.1177/000456329503200501.
  27. Evans G, Greaves I. Microalbuminuria as a predictor of outcome: Shows promise but large prospective trials are needed. BMJ 1999;318(7178):207–208. DOI: 10.1136/bmj.318.7178.207.
  28. Gosling P, Manji M, Czyz J. Microalbuminuria: timing is everything!. Inten Care Med 2003;29(8):1394. DOI: 10.1007/s00134-003-1817-9.
  29. Bakker AJ. Detection of microalbuminuria: Receiver operating characteristic curve analysis favours albumin-to-creatinine ratio over albumin concentration. Diabetes Care 1999;22(2):307–313. DOI: 10.2337/diacare.22.2.307.
  30. Jones CA, Francis ME, Eberhardt MS, Chavers B, Coresh J, Engelgau M, et al. Microalbuminuria in the US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis 2002;39(3): 445–459. DOI: 10.1053/ajkd.2002.31388.
  31. Nguyen HB, Rivers EP, Abrahamian FM, Moran GJ, Abraham E, Trzeciak S, et al. Severe sepsis and septic shock: Review of literature and emergency department management guidelines. Ann Emerg Med 2006;48(1):28–54. DOI: 10.1016/j.annemergmed.2006.02.015.
  32. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med 2013;369(9):840–851. DOI: 10.1056/NEJMra1208623.
  33. Drumheller BC, McGrath M, Matsuura AC, Gaieski DF. Point-of-care urine albumin:creatinine ratio is associated with outcome in emergency department patients with sepsis: A pilot study. Acad Emerg Med 2012;19(3):259–264. DOI: 10.1111/j.1553-2712.2011.01266.x.
  34. Thorevska N, Sabahi R, Upadya A, Manthous C, Amoateng-Adjepong Y. Microalbuminuria in critically ill medical patients: Prevalence, predictors, and prognostic significance. Crit Care Med 2003;31(4):1075–1081. DOI: 10.1097/01.CCM.0000059316.90804.0B.
  35. Gosling P, Brudney S, McGrath L, Riseboro S, Manji M. Mortality prediction at admission to intensive care: A comparison of microalbuminuria with acute physiology scores after 24 hours. Crit Care Med 2003;31(1):98–103. DOI: 10.1097/00003246-200301000-00016.
  36. MacKinnon KL, Molnar Z, Lowe D, Shearer E. Use of microalbuminuria as a predictor of outcome in critically ill patients. Br J Anaesth 2000;84(2):239–241. DOI: 10.1093/oxfordjournals.bja.a013409.
  37. Pallister I, Dent C, Wise CC, Alpar EK, Gosling P. Early post-traumatic acute respiratory distress syndrome and albumin excretion rate: A prospective evaluation of a “point-of-care” predictive test. Injury 2001;32(3):177–181. DOI: 10.1016/s0020-1383(00)00149-2.
  38. De Gaudia AR, Adembri C, Grechi S, Novelli GP. Microalbuminuria as an early index of impairment of glomerular permeability in postoperative septic patients. Intensive Care Med 2000;26(9): 1364–1368. DOI: 10.1007/s001340000593.
  39. Wakeham MK, Rajzer KL, Angst DB, Torero LE, Jamovich DG. Microalbuminuria levels are correlated with PELOD scores in critically ill children. Pediatr Crit Care Med 2004;5(5):509. DOI: 10.1097/00130478-200409000-00045.
  40. Din AH, Frew Q, Smailes ST, Dziewulski P. The utility of microalbuminuria measurements in pediatric burn injuries in critical care. J Crit Care 2015;30(1):156–161. DOI: http://dx.doi.org/10.1016/j.jcrc.2014.09.005.
  41. Sarti A, De Gaudio AR, Messineo A, Cuttini M, Ventura A. Glomerular permeability after surgical trauma in children: Relationship between microalbuminuria and surgical stress score. Crit Care Med 2001;29(8):1626–1629. DOI: 10.1097/00003246-200108000- 00021.
  42. Cirillo M, Laurenzi M, Mancini M, Zanchetti A, De Santo NG. Low muscular mass and overestimation of microalbuminuria by urinary albumin/creatinine ratio. Hypertension 2006;47(1):56–61. DOI: 10.1161/01.HYP.0000197953.91461.95.
  43. Katz DH, Burns JA, Aguilar FG, Beussink L, Shah SJ. Albuminuria is independently associated with cardiac remodelling, abnormal right and left ventricular function, and worse outcomes in heart failure with preserved ejection fraction. J A C C: Heart Failure 2014;2:586–596.
  44. Rinaldi S, Adembri C, Lla Grechi S, De Gaudio AR. Low-dose hydrocortisone during severe sepsis: Effects on microalbuminuria. Crit Care Med 2006;34(9):2334–2339. DOI: 10.1097/01.CCM. 0000233872.04706.BB.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.