Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 24 , ISSUE S5 ( November, 2020 ) > List of Articles

GUIDELINES

Basic Critical Care for Management of COVID-19 Patients: Position Paper of Indian Society of Critical Care Medicine, Part-I

Deven Juneja, Raymond D Savio, Shrikanth Srinivasan, Suresh Ramasubban, Pavan K Reddy, Manoj Singh, Palepu BN Gopal, Dhruva Chaudhry, Deepak Govil, Shubhal Dixit

Keywords : Antivirals, Corticosteroids, COVID-19, Critical care, Intensive care, SARS-CoV-2

Citation Information :

DOI: 10.5005/jp-journals-10071-23601

License: CC BY-NC 4.0

Published Online: 18-11-2020

Copyright Statement:  Copyright © 2020; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

With more than 23 million infections and more than 814,000 deaths worldwide, the coronavirus disease-2019 (COVID-19) pandemic is still far from over. Several classes of drugs including antivirals, antiretrovirals, anti-inflammatory, immunomodulatory, and antibiotics have been tried with varying levels of success. Still, there is lack of any specific therapy to deal with this infection. Although less than 30% of these patients require intensive care unit admission, morbidity and mortality in this subgroup of patients remain high. Hence, it becomes imperative to have general principles to guide intensivists managing these patients. However, as the literature emerges, these recommendations may change and hence, frequent updates may be required.


PDF Share
  1. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020(18):NEJMoa2002032 10.1056/NEJMoa2002032.
  2. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497–506. DOI: 10.1016/S0140-6736(20)30183-5.
  3. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA 2020;323(16):1574–1581. DOI: 10.1001/jama.2020.5394.
  4. Wang D, Hu B, Hu C, Hu F, Liu X, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020. e201585. DOI: 10.1001/jama.2020.1585.
  5. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respirat Med 2020(5):S2213-2600(20)30079-5 10.1016/S2213-2600(20)30079-5.
  6. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA 2020;323(16):1612–1614. DOI: 10.1001/jama.2020.4326.
  7. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395(10229):1054–1062. DOI: 10.1016/S0140-6736(20)30566-3.
  8. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336(7650):924–926. DOI: 10.1136/bmj.39489.470347.AD.
  9. NICE, COVID-19 rapid guideline: critical care. NICE guideline [NG159]. March 2020. www.nice.org.uk/guidance/ng159.
  10. Lacobucci G. COVID-19: doctors are given new guidelines on when to admit patients to critical care. BMJ 2020;368:m1189. DOI: doi.org/10.1136/bmj.m1189.
  11. Bion J, Dennis A. ICU admission and discharge criteria. Oxford Textbook of Critical Care. 2nd ed., Oxford University Press; 2016.
  12. Bouadma L, Lescure FX, Lucet JC, Yazdanpanah Y, Timsi JF. Severe SARS-CoV-2 infections: practical considerations and management strategy for intensivists. Intensive Care Med 2020;46(4):579–582. DOI: 10.1007/s00134-020-05967-x.
  13. Swiss Society of Intensive Care Medicine. Recommendations for the admission of patients with COVID-19 to intensive care and intermediate care units (ICUs and IMCUs). Swiss Med Wkly 2020;150:w20227. DOI: doi.org/10.4414/smw.2020.20227.
  14. NICE. National Early Warning Score systems that alert to deteriorating adult patients in hospital. Medtech innovation briefing [MIB205]. February 2020. https//www.nice.org.uk/advice/mib205.
  15. Phua J, Weng L, Ling L, Egi M, Lim CM, Divatia JV, et al., for the Asian Critical Care Clinical Trials Group Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet Respir Med 2020;8(5):506–517. DOI: 10.1016/S2213-2600(20)30161-2.
  16. Nates JL, Nunnally M, Kleinpell R, Blosser S, Goldner J, Birriel B, et al. ICU admission, discharge, and triage guidelines: a framework to enhance clinical operations, development of institutional policies, and further research. Crit Care Med 2016;44(8):1553–1602. DOI: 10.1097/CCM.0000000000001856.
  17. Mehta Y, Chaudhry D, Abraham OC, Chacko J, Divatia J, Jagiasi B, et al. Critical care for COVID-19 affected patients: position statement of the Indian Society of Critical Care. Indian J Crit Care Med 2020;24(4):222–241. DOI: 10.5005/jp-journals-10071-23395.
  18. Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. J Med Virol 2020. Online ahead of print 10.1002/jmv.25819.
  19. Yanga AP, Liub JP, Taoc WQ, Lib HM. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol 2020;84:106504. DOI: 10.1016/j.intimp.2020.106504.
  20. Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med 2020;58(7):1131–1134. DOI: 10.1515/cclm-2020-0198.
  21. Ferrari D, Motta A, Strollo M, Banfi G, Locatelli M. Routine blood tests as a potential diagnostic tool for COVID-19. Clin Chem Lab Med 2020;58(7):1095–1099. DOI: 10.1515/cclm-2020-0398.
  22. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020(4). DOI: 10.1111/jth.14768.
  23. Ioos V, Galbois A, Guidet B. Should we still order chest X-rays in the ICU?. Vincent JL, ed. Annual Update in Intensive Care and Emergency Medicine, vol. 1, Berlin, Heidelberg: Springer; 2011. DOI: https://doi.org/10.1007/978-3-642-18081-1_66.
  24. Bonow RO, Fonarow GC, O'Gara PT, Yancy CW. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol 2020(7). DOI: 10.1001/jamacardio.2020.1105.
  25. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis 2020. ciaa248. DOI: 10.1093/cid/ciaa248.
  26. Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, et al. Prognostic value of interleukin-6, C reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol 2020;127:104370. DOI: 10.1016/j.jcv.2020.104370.
  27. Tan C, Huang Y, Shi F, Tan K, Ma Q, Chen Y, et al. C-reactive protein correlates with CT findings and predicts severe COVID-19 early. J Med Virol 2020;92(7):856–862. DOI: 10.1002/jmv.25871.
  28. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395(10223):507–513. DOI: 10.1016/S0140-6736(20)30211-7.
  29. Coomes EA, Haghbayan H. Interleukin-6 in COVID-19: a systematic review and meta-analysis. medRxiv 2020. 2020.03.30.20048058 10.1101/2020.03.30.20048058.
  30. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020;46(5):846–848. DOI: 10.1007/s00134-020-05991-x.
  31. Xiong Y, Sun D, Liu Y, Fan Y, Zhao L, Li X, et al. Clinical and high-resolution CT features of the COVID-19 infection: comparison of the initial and follow-up changes. Investig Radiol 2020;55(6):332–339. DOI: 10.1097/RLI.0000000000000674.
  32. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020;368:m1091. DOI: https://doi.org/10.1136/bmj.m1091.
  33. Khan IH, Zahra SA, Zaim S, Harky A. At the heart of COVID-19. J Card Surg 2020;35(6):1287–1294. DOI: 10.1111/jocs.14596.
  34. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020(7):e200950. DOI: 10.1001/jamacardio.2020.0950.
  35. Siripanthong B, Nazarian S, Muser D, et al. Recognizing COVID-19-related myocarditis: the possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm 2020(9):S1547-5271(20)30422-7 10.1016/j.hrthm.2020.05.001.
  36. Zhou P, Liu Z, Chen Y, Xiao Y, Huang X, Fan XG. Bacterial and fungal infections in COVID-19 patients: a matter of concern. Infect Control Hosp Epidemiol 2020;22(9):1–2. DOI: 10.1017/ice.2020.156.
  37. Li M, Chest CT. Features and their role in COVID-19. Radiol Infect Diseas 10.1016/j.jrid.2020.04.00.
  38. American College of Radiology (ACR). ACR recommendations for the use of chest radiography and computed tomography (CT) for suspected COVID-19 infection. ACR website. www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CTfor-Suspected-COVID19-Infection. Updated March 2020.
  39. Society of Thoracic Radiology/American Society of Emergency Radiology COVID-19 Position Statement, March 11, 2020. https://thoracicrad.org.
  40. Prokop M, van Everdingen W, van Rees Vellinga T, Quarles van Ufford H, Stöger L, et. al., for The “COVID-19 Standardized Reporting” Working Group of the Dutch Radiological Society CO-RADS – A categorical CT assessment scheme for patients with suspected COVID-19: definition and evaluation. Radiology 2020;296(2):E97–E104. DOI: https://doi.org/10.1148/radiol.2020201473.
  41. Yang R, Li X, Liu H, Zhen Y, Zhang X, Xiong Q, et. al. Chest CT severity score: an imaging tool for assessing severe COVID-19. Radiology: Cardiothoracic Imaging 2020. DOI: 10.1148/ryct.2020200047.
  42. Guo L, Wei D, Zhang X, Wu Y, Li Q, Zhou M, et al. Clinical features predicting mortality risk in patients with viral pneumonia: the MuLBSTA score. Front Microbiol 2019;10:2752. DOI: 10.3389/fmicb.2019.02752.
  43. Tierney DM, Huelster JS, Overgaard JD, Plunkett MB, Boland LL, St. Hill CA, et al. Comparative performance of pulmonary ultrasound, chest radiograph, and CT among patients with acute respiratory failure. Crit Care Med 2020;48(2):151–157. DOI: 10.1097/CCM.0000000000004124.
  44. Vetrugno L, Bove T, Orso D, Barbariol F, Bassi F, Boero E, et al. Our Italian experience using lung ultrasound for identification, grading and serial follow-up of severity of lung involvement for management of patients with COVID-19. Echocardiography 2020;37(4):625–627. DOI: 10.1111/echo.14664.
  45. Munshi L, Del Sorbo L, Adhikari NKJ, Hodgson CL, Wunsch H, Meade MO, et al. Prone position for acute respiratory distress syndrome: a systematic review and meta-analysis. Ann Am Thorac Soc 2017;14(suppl 4):S280–S288. DOI: 10.1513/AnnalsATS.201704-343OT.
  46. Elharrar X, Trigui Y, Dols AM, Touchon F, Martinez S, Prud'homme E, et al. Use of prone positioning in non intubated patients with COVID-19 and hypoxemic acute respiratory failure. JAMA 2020;323(22):2336–2338. DOI: 10.1001/jama.2020.8255.
  47. Sartini C, Tresoldi M, Scarpellini P, Tettamanti A, Carcò F, Landoni G, et al. Respiratory parameters in patients with COVID-19 after using noninvasive ventilation in the prone position outside the intensive care unit. JAMA 2020;323(22):2338–2340. DOI: 10.1001/jama.2020.7861.
  48. Coppo A, Bellani G, Winterton D, Di Pierro M, Soria A, Faverio P, et al. Feasibility and physiologic effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med 2020(8). DOI: 10.1016/S2213-2600(20)30268-X.
  49. Xu Q, Wang T, Qin X, Jie Y, Zha L, Lu W. Early awake prone position combined with high-flow nasal oxygen therapy in severe COVID-19: a case series. Crit Care 2020;24(1):250–252. DOI: 10.1186/s13054-020-02991-7.
  50. Dong W, Gong Y, Feng J, Bai L, Qing H, Zhou P, et al. Early awake prone and lateral position in non-intubated severe and critical patients with COVID-19 in Wuhan: a respective cohort study. medRxiv 2020. 05.09.20091454 10.1101/2020.05.09.20091454.
  51. Bower G, He H. Protocol for awake prone positioning in COVID-19 patients: to do it earlier, easier, and longer. Crit Care 2020;24(1):371–373. DOI: 10.1186/s13054-020-03096-x.
  52. UK Department of Health (1996). Guidelines for Admission and Discharge to Intensive Care. London: DoH. http://www.wales.nhs.uk/sites3/documents/736/Guidelines%20on%20the%20Admission%20and%20discharge%20from%20ICHDU%20%20March%201996.pdf. Accessed on 22 July 2020.
  53. Guidance on the Provision of Intensive Care Services. (2015). UK Faculty of Intensive Care Medicine, London. Available at: www.ficm.ac.uk.
  54. Task Force of the American College of Critical Care Medicine, Society of Critical Care Medicine. Guidelines for intensive care unit admission, discharge, and triage. Crit Care Med 1999;27(3):633–638. DOI: 10.1097/00003246-199903000-00048.
  55. Schultz MJ, Ognjen. G. Mandatory checklists at discharge may have the potential to prevent readmissions. Crit Care Med 2010;38(4):1226–1227. DOI: 10.1097/CCM.0b013e3181ce4858.
  56. Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020;55(4):105932. Editorial 10.1016/j.ijantimicag.2020.105932.
  57. Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int J Antimicrob Agents 2020;55(5):105938. DOI: 10.1016/j.ijantimicag.2020.105938.
  58. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020(15):ciaa237. DOI: 10.1093/cid/ciaa237.
  59. Rolain MJ, Colson, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents 2007;30(4):297–308. DOI: 10.1016/j.ijantimicag.2007.05.015.
  60. Sahraei Z, Shabani M, Shokouhi S, Saffaei A. Aminoquinolines against coronavirus disease 2019 (COVID-19): chloroquine or hydroxychloroquine. Int J Antimicrob Agents 2020;55(4):105945. DOI: 10.1016/j.ijantimicag.2020.105945.
  61. National Health Commission & State Administration of Traditional Chinese Medicine (Trial Version 7). Diagnosis and treatment protocol for novel coronavirus pneumonia. https://www.chinadaily.com.cn/pdf/2020/1.Clinical.Protocols.for.the.Diagnosis.and.Treatment.of.COVID-19.V7.pdf.
  62. US Food and Drug Administration. Fact sheet for health care providers emergency use authorization (EUA) of hydroxychloroquine sulfate supplied from the strategic national stockpile for treatment of COVID-19 in certain hospitalized patients. Dated 2020 Mar 27. From FDA website. (https://www.fda.gov/media/136537/download).
  63. Huang M, Tang T, Pang P, Li M, Ma R, Lu J, et al. Treating COVID-19 with chloroquine. J Mol Cell Biol 2020;12(4):322–325. DOI: 10.1093/jmcb/mjaa014.
  64. National Institutes of Health. Coronavirus disease 2019 (COVID-19) treatment guidelines. From NIH website. Accessed 2020 May 15. Available at https://www.covid19treatmentguidelines.nih.gov/.
  65. Infectious Diseases Society of America. IDSA guidelines on the treatment and management of patients with COVID-19. From IDSA website. Accessed 2020 May 15. Available at https://www.idsociety.org/practice-guideline/covid-19-guideline-treatment-and-management/.
  66. US Food and Drug Administration. FDA drug safety communication: FDA cautions against use of hydroxychloroquine or chloroquine for COVID-19 outside of the hospital setting or a clinical trial due to risk of heart rhythm problems. April 24, 2020. Available at https://www.fda.gov/media/137250/download.
  67. Horby P, Landray M. Statement from the chief investigators of the randomised evalution of COVID-19 therapy (RECOVERY) trial on hydroxychloroquine. 2020 Jun 5. (https://www.recoverytrial.net/news/statement-from-the-chief-investigators-of-the-randomised-evaluation-of-covid-19-therapy-recovery-trial-on-hydroxychloroquine-5-june-2020-no-clinicalbenefit-from-use-of-hydroxychloroquine-in-hospitalised-patients-with-covid-19).
  68. RECOVERY Central Coordinating Office. Study protocol for randomized evaluation of Covid-19 therapy (RECOVERY). (https://www.recoverytrial.net/files/recovery-protocol-v6-0-2020- 05-14.pdf).
  69. Revised advisory on the use of Hydroxychloroquine (HCQ) as prophylaxis for COVID-19 infection (in supersession of previous advisory dated 23rd March, 2020).
  70. Tran DH, Sugamata R, Hirose T, Suzuki S, Noguchi Y, Sugawara A, et al. Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza A (H1N1) pdm09 virus infection by interfering with virus internalization process. J Antibiot (Tokyo) 2019;72(10):759–768. DOI: 10.1038/s41429-019-0204-x.
  71. Li C, Zu S, Deng YQ, Li D, Parvatiyar K, Quanquin N, et al. Azithromycin protects against Zika virus infection by upregulating virus-induced type I and III interferon responses. Antimicrob Agents Chemother 2019;63(12):e00394-19. DOI: 10.1128/AAC.00394-19.
  72. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020;56(1):105949. DOI: 10.1016/j.ijantimicag.2020. 105949.
  73. Kawamura K, Ichikado K, Takaki M, Eguchi Y, Anan K, Suga M, et al. Adjunctive therapy with azithromycin for moderate and severe acute respiratory distress syndrome: a retrospective, propensity score-matching analysis of prospectively collected data at a single center. Int J Antimicrob Agents 2018;51(6):918–924. DOI: 10.1016/j.ijantimicag.2018.02.009.
  74. Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J, Tesoriero J, et al. Association of treatment with hydrochloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York state. JAMA 2020;323(24):2493–2502. DOI: 10.1001/jama.2020.8630.
  75. Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G, et al. Observational study of hydroxychloroquine in hospitalized patients with COVID-19. N Engl J Med 2020;382(25):2411–2418. DOI: 10.1056/NEJMoa2012410.
  76. Million M, Lagier JC, Gautret P, Colson P, Fournier PE, Amrane S, et al. Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: a retrospective analysis of 1061 cases in Marseille, France. Travel Med Infect Dis 2020;35:101738. DOI: 10.1016/j.tmaid.2020.101738.
  77. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Adaptive COVID-19 treatment trial (ACTT). Remdesivir for the treatment of COVID-19–preliminary report. N Engl J Med 2020. DOI: 10.1056/NEJMoa2007764.
  78. Goldman JD, Lye DCB, Hui DS, Marks KM, Bruno R, Montejano R, et al. Remdesivir for 5 or 10 days in patients with severe Covid-19. N Engl J Med 2020. DOI: 10.1056/NEJMoa2015301.
  79. Fact sheet for health care providers emergency use authorization (EUA) of veklury® (remdesivir). https://www.fda.gov/media/137566/download. Accessed 25th July 2020.
  80. Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA 2020;323(15):1488–1494. DOI: 10.1001/jama.2020.3204.
  81. Best BM, Capparelli EV, Diep H, Rossi SS, Farrell MJ, Williams E, et al. Pharmacokinetics of lopinavir/ritonavir crushed versus whole tablets in children. J Acquir Immune Defic Syndr 2011;58(4):385–391. DOI: 10.1097/QAI.0b013e318232b057.
  82. Chu CM, Cheng VC, Hung IF, Wong MML, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004;59(3):252–256. DOI: 10.1136/thorax.2003.012658.
  83. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of Lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020(19). DOI: 10.1056/NEJMoa2001282.
  84. Statement from the Chief Investigators of the Randomised Evaluation of COVid-19 thERapY (RECOVERY) Trial on lopinavir-ritonavir, 29 June 2020. https://www.recoverytrial.net/files/lopinavir-ritonavir-recovery-statement-29062020_final.pdf. Accessed 26th August 2020.
  85. Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020;19(3):14–150. DOI: 10.1038/d41573-020-00016-0.
  86. McCreary EK, Pogue M, on behalf of the Society of Infectious Diseases Pharmacists COVID-19 treatment: a review of early and emerging options. open forum infectious diseases. 2020;7(4):ofaa105. DOI: 10.1093/ofid/ofaa105.
  87. Chen C, Zhang Y, Huang J, Yin P, Cheng Z, Wu J, et al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. medRxiv 2020. Preprint (not peer reviewed) 10.1101/2020.03.17.20037432.
  88. Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing) 2020. DOI: 10.1016/j.eng.2020.03.007.
  89. Schmith VD, Zhou JJ, Lohmer LR. The approved dose of ivermectin alone is not the ideal dose for the treatment of COVID-19. Clin Pharmacol Ther 2020(4). DOI: 10.1002/cpt.1889.
  90. Rajter JC, Sherman M, Fatteh N, Vogel F, Sacks J, Rajter JJ. ICON (ivermectin in Covid nineteen) study: use of ivermectin is associated with lower mortality in hospitalized patients with COVID19. medRxiv 2020. 06.06.20124461 10.1101/2020.06.06.20124461.
  91. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020;395(10223):473–475. DOI: 10.1016/S0140-6736(20)30317-2.
  92. Horby P, Lim WS, Emberson J, Mafham M, Bell J, Linsell L, et al., RECOVERY Collaborative Group Effect of dexamethasone in hospitalized patients with COVID-19: preliminary report. medRxiv 2020. 06.22.20137273 10.1101/2020.06.22.20137273.
  93. Wang Y, Jiang W, He Q, Wang C, Wang B, Zhou P, et al. Early, low-dose and short-term application of corticosteroid treatment in patients with severe COVID-19 pneumonia: single-center experience from Wuhan, China. medRxiv 2020. 2003.2006.20032342.
  94. Qin YY, Zhou YH, Lu YQ, Sun F, Yang S, Harypursat V, et al. Effectiveness of glucocorticoid therapy in patients with severe novel coronavirus pneumonia: protocol of a randomized controlled trial. Chin Med J (Engl) 2020;133(9):1080–1086. DOI: 10.1097/CM9.0000000000000791.
  95. Fang X, Mei Q, Yang T, Li L, Wang Y, Tong F, et al. Low-dose corticosteroid therapy does not delay viral clearance in patients with COVID-19. J Infect 2020;81(1):147–178. DOI: 10.1016/j.jinf.2020. 03.039.
  96. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020;180(7):1–11. DOI: 10.1001/jamainternmed.2020.0994.
  97. Fadel R, Morrison AR, Vahia A, Smith ZR, Chaudhry Z, Bhargava P, et al. Early short course corticosteroids in hospitalized patients with COVID-19. Clin Infect Dis 2020. ciaa601. DOI: 10.1093/cid/ciaa601.
  98. Villar J, Belda J, Añón JM, Blanco J, Pérez-Méndez L, Ferrando C, et al. The DEXA-ARDS network. dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med 2020;8(1):267–276. DOI: 10.1186/s13063-016-1456-4.
  99. Ruthman CA, Festic E. Emerging therapies for the prevention of acute respiratory distress syndrome. Therapeut Adv Respirat 2015(4):173–187. DOI: 10.1177/1753465815585716.
  100. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med 2020(5):854–887. DOI: 10.1007/s00134-020-06022-5.
  101. Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respirat J 2020;55(4):2000607. DOI: 10.1183/13993003.00607-2020.
  102. Siddiqi HK, Mehra MR. Covid-19 illness in native and immunosuppressed states: a clinical-therapeutic staging proposal. J Heart Lung Transplantat 2020;39(5):405–407. DOI: 10.1016/j.healun.2020.03.012.
  103. Ling Y, Xu SB, Lin YX, Tian D, Zhu ZQ, Dai FH, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J 2020;133(9):1039–1043. DOI: 10.1097/CM9.0000000000000774.
  104. Steinberg KP, Hudson LD, Goodman RB, Hough CL, Lanken PN, Hyzy R, et al. Acute respiratory distress syndrome (ARDS) clinical trials Network., efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 2006;354(16):1671–1684. DOI: 10.1056/NEJMoa051693.
  105. Buttgereit F, da Silva JAP, Boers M, Burmester GR, Cutolo M, Jacobs J, et al. Standardized nomenclature for glucocorticoid dosages and glucocorticoid treatment regimens: current questions and tentative answers in rheumatology. Ann Rheum Dis 2002;61(8):718–722. DOI: 10.1136/ard.61.8.722.
  106. Meduri GU, Golden E, Freire AX, Taylor E, Zaman M, Carson SJ, et al. Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial. Chest 2007;131(4):954–963. DOI: 10.1378/chest.06-2100.
  107. Annane D, Pastores SM, Rochwerg B, Arlt W, Balk RA, Beishuizen A, et al. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (part I): society of critical care medicine (SCCM) and european society of intensive care medicine (ESICM) 2017. Crit Care Med 2017;45(12):2078–2088. DOI: 10.1097/CCM.0000000000002737.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.