Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 25 , ISSUE 3 ( March, 2021 ) > List of Articles

ORIGINAL RESEARCH

Validation of an Isothermal Amplification Platform for Microbial Identification and Antimicrobial Resistance Detection in Blood: A Prospective Study

Prasadini Guru, Reddy Sailaja Mundre, Nima Lawrence, Snehali Majumder, Alben Sigamani, CN Anupama, Sudeshna Adak

Keywords : Blood stream infection, Diagnosis, Isothermal amplification, Pathogen detection, Sepsis

Citation Information : Guru P, Mundre RS, Lawrence N, Majumder S, Sigamani A, Anupama C, Adak S. Validation of an Isothermal Amplification Platform for Microbial Identification and Antimicrobial Resistance Detection in Blood: A Prospective Study. Indian J Crit Care Med 2021; 25 (3):299-304.

DOI: 10.5005/jp-journals-10071-23761

License: CC BY-NC 4.0

Published Online: 20-03-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Background: Recent advances in nucleic acid amplification technique (NAAT)-based identification of pathogens in blood stream infections (BSI) have revolutionized molecular diagnostics in comparison to traditional clinical microbiology practice of blood culture. Rapid pathogen detection with point-of-care diagnostic-applicable platform is prerequisite for efficient patient management. The aim of the study is to evaluate an in-house developed, lyophilized OmiX-AMP pathogen test for the detection of top six BSI-causing bacteria along with two major antimicrobial resistance (AMR) markers of carbapenem and compare it to the traditional blood culture-based detection. Materials and methods: One hundred forty-three patients admitted to the Medical Intensive Care Unit, Narayana Hrudayalaya, Bangalore, with either suspected or proven sepsis, of either gender, of age ≥18 years were enrolled for the study. Pathogen DNA extracted from blood culture sample using OmiX pReP method was amplified at isothermal conditions and analyzed in real time using OmiX Analysis software. Results: Among the processed 143 samples, 54 were true negative, 83 were true positive, 3 were false negative, and 2 were false positive as analyzed by OmiX READ software. Gram-negative bacteria (91.3%) and gram-positive bacteria (75%) were detected with 100% specificity and 95.6% sensitivity along with the AMR marker pattern with a turnaround time of 4 hours from sample collection to results. Conclusion: OmiX-AMP pathogen test detected pathogens with 96.5% concordance in comparison to traditional blood culture. Henceforth, OmiX-AMP pathogen test could be used as a readily deployable diagnostic kit even in low-resource settings.


  1. Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of global incidence and mortality of hospital-treated sepsis—current estimates and limitations. Am J Respir Crit Care Med 2016;193:253–272. DOI: 10.1164/rccm.201504-0781OC.
  2. Abubakar II, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study. Lancet 2015;385:117–171. DOI: 10.1016/S0140-6736(14)61682-2.
  3. Lueangarun S, Leelarasamee A. Impact of inappropriate empiric antimicrobial therapy on mortality of septic patients with bacteremia: a retrospective study. Interdiscip Perspect Infect Dis 2012;2012:765205. DOI: 10.1155/2012/765205.
  4. Chatterjee S, Bhattacharya M, Subhash Kumar T. Epidemiology of adult-population sepsis in India: a single center 5 year experience. Indian J Crit Care Med 2017;21(9):573–577. DOI: 10.4103/ijccm.IJCCM_240_17.
  5. Patel R, Vetter EA, Harmsen WS, Schleck CD, Fadel HJ, et al. Optimized pathogen detection with 30- compared to 20-milliliter blood culture draws. J Clin Microbiol 2011; 49:4047–4051. DOI: 10.1128/JCM.01314-11
  6. Riedel S, Carroll KC. Early identification and treatment of pathogens in sepsis: molecular diagnostics and antibiotic choice. Clin Chest Med 2016;37(2):191–207. DOI: 10.1016/j.ccm.2016.01.018.
  7. Gohel K, Jojera A, Soni S, Gang S, Sabnis R, Desai M. Bacteriological profile and drug resistance patterns of blood culture isolates in a tertiary care nephrourology teaching institute. Biomed Res Int 2014;2014:153747. DOI: 10.1155/2014/153747.
  8. Dat VQ, Vu HN, Nguyen TH, Nguyen HT, Hoang LB, Tien V, et al. Bacterial bloodstream infections in a tertiary infectious diseases hospital in Northern Vietnam: aetiology, drug resistance, and treatment outcome. BMC Infect Dis 2017;17:493. DOI: 10.1186/s12879-017-2582-7.
  9. Khurana S, Mathur P, Kapil A, Valsan C, Behera B. Molecular epidemiology of beta-lactamase producing nosocomial gram-negative pathogens from North and South Indian hospitals. J Med Microbiol 2017;66:999–1004. DOI: 10.1099/jmm.0.000513.
  10. Peters RP, van Agtmael MA, Danner SA, Savelkoul PH, Vandenbroucke-Grauls CM. New developments in the diagnosis of bloodstream infections. Lancet Infect Dis 2004;4:751–760. DOI: 10.1016/S1473-3099(04)01205-8.
  11. Leggieri N, Rida A, Francois P, Schrenzel J. Molecular diagnosis of bloodstream infections: planning to (physically) reach the bedside. Curr Opin Infect Dis 2010;23:311–319. DOI: 10.1097/QCO.0b013e32833bfc44.
  12. Murray PR, Masur H. Current approaches to the diagnosis of bacterial and fungal bloodstream infections in the intensive care unit. Crit Care Med 2012;40(12):3277–3282. DOI: 10.1097/ccm.0b013e318270e771.
  13. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucl Acids Res 2000;28(12):E63. DOI: 10.1093/nar/28.12.e63.
  14. Parida M, Sannarangaiah S, Dash PK, Rao PV, Morita K. Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev Med Virol. 2008;18(6):407–421. DOI: 10.1002/rmv.593.
  15. World Health Organization. Policy statement: automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF system. Geneva: World Health Organization; 2011
  16. Hayashida K, Kajino K, Hachaambwa L, Namangala B, Sugimoto C. Direct blood dry LAMP: a rapid, stable, and easy diagnostic tool for Human African Trypanosomiasis. PLoS Negl Trop Dis 2015;9:e0003578. DOI: 10.1371/journal.pntd.0003578.
  17. Chen HW, Ching WM. Evaluation of the stability of lyophilized loop-mediated isothermal amplification reagents for the detection of Coxiella burnetii. Heliyon 2017;3(10):e00415. DOI: 10.1016/j.heliyon.2017.e00415.
  18. Warhurst G, Maddi S, Dunn G, Ghrew M, Chadwick P. Diagnostic accuracy of SeptiFast multi-pathogen real-time PCR in the setting of suspected healthcare-associated bloodstream infection. Intensive Care Med 2015;41(1):86–93. DOI: 10.1007/s00134-014-3551-x.
  19. Carrara L, Navarro F, Turbau M, Seres M, Morán I, Quintana I, et al. Molecular diagnosis of bloodstream infections with a new dual-priming oligonucleotide-based multiplex PCR assay. J Med Microbiol 2013;62:1673–1679. DOI: 10.1099/jmm.0.064758-0.
  20. Ziegler I, Fagerstrom A, Stralin K, Molling P. Evaluation of a commercial multiplex PCR assay for detection of pathogen DNA in blood from patients with suspected sepsis. PLoS One 2016;20;11(12):e0167883. DOI: 10.1371/journal.pone.0167883.
  21. Wellinghausen N, Kochem AJ, Disque C, Mühl H, Gebert S, Winter J, et al. Diagnosis of bacteremia in whole-blood samples by use of a commercial universal 16S rRNA gene-based PCR and sequence analysis. J Clin Microbiol 2009;47(9):2759–2765. DOI: 10.1128/JCM.00567-09.
  22. Rogina P, Skvarc MM, Stubljar DD. Diagnostic utility of broad range bacterial 16S rRNA gene PCR with degradation of human and free bacterial DNA in bloodstream infection is more sensitive than an in-house developed PCR without degradation of human and free bacterial DNA. Mediators Inflamm 2014;2014:108592. DOI: 10.1155/2014/108592
  23. Jordana-Lluch E, Carolan HE, Giménez M, Sampath R, Ecker DJ, Quesada MD, et al. Rapid diagnosis of bloodstream infections with PCR followed by mass spectrometry. PLoS One 2013;8:e62108. DOI: 10.1371/journal.pone.0062108.
  24. Jordana-Lluch E, Giménez M, Quesada MD, Rivaya B, Marcó C, Domínguez MJ. Evaluation of the broad-range PCR/ESI-MS technology in blood specimens for the molecular diagnosis of bloodstream infections. PLoS One 2015;10:e0140865. DOI: 10.1371/journal.pone.0140865.
  25. Southern TR, Van Schooneveld TC, Bannister DL, Brown TL, Crismon AS, Buss SN. Implementation and performance of the BioFire FilmArray® blood culture identification panel with antimicrobial treatment recommendations for bloodstream infections at a midwestern academic tertiary hospital. Diagn Microbiol Infect Dis 2015;81(2):96–101. DOI: 10.1016/j.diagmicrobio.2014.11.004.
  26. Nagaraj S, Chandran SP, Shamanna P, Macaden R. Carbapenem resistance among Escherichia coli and Klebsiella pneumoniae in a tertiary care hospital in south India. Carbapenem resistance among Escherichia coli and Klebsiella pneumoniae in a tertiary care hospital in south India. Indian J Med Microbiol 2012;30:93–95. DOI: 10.4103/0255-0857.93054.
  27. Rahman M, Prasad KN, Gupta S, Singh S, Singh A, Pathak A, et al. Prevalence and molecular characterization of New Delhi metallo-beta-lactamases in multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from India. Microb Drug Resist 2018;24(6):792–798. DOI: 10.1089/mdr.2017.0078.
  28. Singh SK, Sengupta S, Antony R, Bhattacharya S, Mukhopadhyay C, Ramasubramanian V, et al. Variations in antibiotic use across India – multicentre study through global point prevalence survey. J Hosp Infect 2019;103(3):280–283. DOI: 10.1016/j.jhin.2019.05.014.
  29. Pourabbas B, Firouzi R, Pouladfar G. Characterization of carbapenem-resistant Acinetobacter calcoaceticus-baumannii complex isolates from nosocomial bloodstream infections in southern Iran. J Med Microbiol 2016;65(3):235–239. DOI: 10.1099/jmm.0.000219.
  30. Tian Y, Zhao Y, Chen B, Chen S, Zeng R, Hu B, et al. Real-time PCR assay for detection of Dickeya fangzhongdai causing bleeding canker of pear disease in China. J Integr Agric 2020;19:898–905. DOI: 10.1016/S2095-3119(19)62881-9.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.