Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 25 , ISSUE 6 ( June, 2021 ) > List of Articles

BRIEF RESEARCH COMMUNICATION

Superadded Coinfections and Antibiotic Resistance in the Context of COVID-19: Where do We Stand?

Citation Information : Superadded Coinfections and Antibiotic Resistance in the Context of COVID-19: Where do We Stand?. Indian J Crit Care Med 2021; 25 (6):699-703.

DOI: 10.5005/jp-journals-10071-23855

License: CC BY-NC 4.0

Published Online: 01-06-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Purpose of review: Poor outcomes in the current coronavirus disease 2019 (COVID-19) pandemic have been attributed to superadded bacterial coinfections. The World Health Organization has reported overzealous usage of broad-spectrum antibiotics during this current pandemic raising concerns of increasing antimicrobial resistance? Therefore, the knowledge of coinfection and the common pathogens during these challenging times is essential for antibiotic stewardship practices. Recent findings: The incidence of reported superimposed bacterial and viral coinfections in COVID-19 patients is around 0.04 to 17%. However, more than 70% of patients have received broad-spectrum antibiotics. The presence of a simultaneous coinfection can be suspected in patients with neutrophilic lymphocytosis and elevated procalcitonin in the setting of COVID-19. Multiplex polymerase chain reaction (PCR) panels, with its short turnaround time, aid in the definitive diagnosis of possible coinfection. Acinetobacter baumanii, Mycoplasma pneumonia, influenza virus, Aspergillus, Candida, etc., are commonly implicated pathogens. Summary: Rapid characterization of coinfection and avoidance of overzealous use of broad-spectrum antibiotics in COVID-19 patients are the key to prevent antibiotic resistance during this pandemic.


HTML PDF Share
  1. Wassenaar TM, Zou Y. 2019_nCoV/SARS-CoV-2: rapid classification of betacoronaviruses and identification of Traditional Chinese Medicine as potential origin of zoonotic coronaviruses. Lett Appl Microbiol 2020;70(5):342–348. DOI: 10.1111/lam.13285.
  2. Shah NS, Greenberg JA, McNulty MC, Gregg KS, Riddell J, Mangino JE, et al. Bacterial and viral co-infections complicating severe influenza: incidence and impact among 507 U.S. patients, 2013-14. J Clin Virol 2016;80:12–19. DOI: 10.1016/j.jcv.2016.04.008.
  3. Klein EY, Monteforte B, Gupta A, Jiang W, May L, Hsieh YH, et al. The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis. Influenza Other Respir Viruses 2016;10(5):394–403. DOI: 10.1111/irv.12398.
  4. Chertow DS, Memoli MJ. Bacterial coinfection in influenza: a grand rounds review. JAMA 2013;309(3):275–282. DOI: 10.1001/jama.2012.194139.
  5. Jang TN, Yeh DY, Shen SH, Huang CH, Jiang JS, Kao SJ. Severe acute respiratory syndrome in Taiwan: analysis of epidemiological characteristics in 29 cases. J Infect 2004;48(1):23–31. DOI: 10.1016/j.jinf.2003.09.004.
  6. Arabi YM, Deeb AM, Al-Hameed F, Mandourah Y, Almekhlafi GA, Sindi AA, et al. Macrolides in critically ill patients with Middle East Respiratory Syndrome. Int J Infect Dis 2019;81:184–190. DOI: 10.1016/j.ijid.2019.01.041.
  7. WHO guidance on clinical management of influenza infections. Available from: https://www.who.int/influenza/resources/documents/clinical_management_2012/en/ [Accessed August 29, 2020].
  8. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med 2020;46(5):854–887. DOI: 10.1007/s00134-020-06022-5.
  9. Li N, Ren A, Wang X, Fan X, Zhao Y, Gao GF, et al. Influenza viral neuraminidase primes bacterial coinfection through TGF-β-mediated expression of host cell receptors. Proc Natl Acad Sci U S A 2015;112(1):238–243. DOI: 10.1073/pnas.1414422112.
  10. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med 2020;26(5):672–675. DOI: 10.1038/s41591-020-0869-5.
  11. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect 2020;80(6):607–613. DOI: 10.1016/j.jinf.2020.03.037.
  12. Langford BJ, So M, Raybardhan S, Leung V, Westwood D, MacFadden DR, et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect 2020;26(12):1622–1629. DOI: 10.1016/j.cmi.2020.07.016.
  13. Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect 2020;81(2):266–275. DOI: 10.1016/j.jinf.2020.05.046.
  14. Fan BE, Lim KGE, Chong VCL, Chan SSW, Ong KH, Kuperan P. COVID-19 and mycoplasma pneumoniae coinfection. Am J Hematol 2020;95(6):723–724. DOI: 10.1002/ajh.25785.
  15. Jin M, Khan AI. Procalcitonin: uses in the clinical laboratory for the diagnosis of sepsis. Lab Med 2010;41(3):173–177. DOI: 10.1309/LMQ2GRR4QLFKHCH9.
  16. Azzini AM, Dorizzi RM, Sette P, Vecchi M, Coledan I, Righi E, et al. A 2020 review on the role of procalcitonin in different clinical settings: an update conducted with the tools of the Evidence Based Laboratory Medicine. Ann Transl Med 2020;8(9):610. DOI: 10.21037/atm-20-1855.
  17. Yadav R, Sahoo D, Graham R. Thoracic imaging in COVID-19. Cleve Clin J Med 2020;87(8):469–476. DOI: 10.3949/ccjm.87a.ccc032.
  18. Kanne JP, Little BP, Chung JH, Elicker BM, Ketai LH. Essentials for radiologists on COVID-19: an update-radiology scientific expert panel. Radiology 2020;296(2):E113–E114. DOI: 10.1148/radiol.2020200527.
  19. Rodrigues JCL, Hare SS, Edey A, Devaraj A, Jacob J, Johnstone A, et al. An update on COVID-19 for the radiologist – a British society of Thoracic Imaging statement. Clin Radiol 2020;75(5):323–325. DOI: 10.1016/j.crad.2020.03.003.
  20. Huang HS, Tsai CL, Chang J, Hsu TC, Lin S, Lee CC. Multiplex PCR system for the rapid diagnosis of respiratory virus infection: systematic review and meta-analysis. Clin Microbiol Infect 2018;24(10):1055–1063. DOI: 10.1016/j.cmi.2017.11.018.
  21. Ramakrishnan B, Gopalakrishnan R, Senthur Nambi P, Durairajan SK, Madhumitha R, Tarigopula A, et al. Utility of multiplex polymerase chain reaction (PCR) in diarrhea—an Indian perspective. Indian J Gastroenterol 2018;37(5):402–409. DOI: 10.1007/s12664-018-0889-y.
  22. Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, et al. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis 2020;71(9):2459–2468. DOI: 10.1093/cid/ciaa530.23.
  23. Lai CC, Wang CY, Hsueh PR. Co-infections among patients with COVID-19: the need for combination therapy with non-anti-SARS-CoV-2 agents? J Microbiol Immunol Infect 2020;53(4):505–512. DOI: 10.1016/j.jmii.2020.05.013.
  24. Vincent JL, Sakr Y, Singer M, Martin-Loeches I, MacHado FR, Marshall JC, et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA 2020;323(15):1478–1487. DOI: 10.1001/jama.2020.2717.
  25. Beović B, Doušak M, Ferreira-Coimbra J, Nadrah K, Rubulotta F, Belliato M, et al. Antibiotic use in patients with COVID-19: a ‘snapshot’ Infectious Diseases International Research Initiative (ID-IRI) survey. J Antimicrob Chemother 2020;75(11):3386–3390. DOI: 10.1093/jac/dkaa326.
  26. Prasad R, Singh A, Gupta N. Tuberculosis and COVID-19 in India: challenges and opportunities. Lung India 2020;37(4):292–294. DOI: 10.4103/lungindia.lungindia_260_20.
  27. Yap FHY, Gomersall CD, Fung KSC, Ho PL, Ho OM, Lam PKN, et al. Increase in methicillin-resistant Staphylococcus aureus acquisition rate and change in pathogen pattern associated with an outbreak of severe acute respiratory syndrome. Clin Infect Dis 2004;39(4):511–516.DOI: 10.1086/422641.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.