Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 25 , ISSUE 11 ( November, 2021 ) > List of Articles

Original Article

Analysis of Blood Culture Data Influences Future Epidemiology of Bloodstream Infections: A 5-year Retrospective Study at a Tertiary Care Hospital in India

Anuradha Sharma, Arghadip Samaddar, Anand Maurya, Vivek Hada, Himanshu Narula, Twishi Shrimali, Vijaya Lakshmi Nag

Keywords : Blood culture, Bloodstream infections, Candida parapsilosis, Fluconazole resistance, Pneumococci, Salmonellae

Citation Information : Sharma A, Samaddar A, Maurya A, Hada V, Narula H, Shrimali T, Nag VL. Analysis of Blood Culture Data Influences Future Epidemiology of Bloodstream Infections: A 5-year Retrospective Study at a Tertiary Care Hospital in India. Indian J Crit Care Med 2021; 25 (11):1258-1262.

DOI: 10.5005/jp-journals-10071-23922

License: CC BY-NC 4.0

Published Online: 16-11-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Background: Blood cultures are the most significant samples received in a microbiology laboratory. Good quality control of pre-analytic, analytic, and post-analytic stages can have a significant impact on patient outcomes. Here, we present the improvements brought about by reviewing blood culture data with clinicians at a tertiary care institute in India. Methods: Four-year blood culture data (phase I—February 2014–February 2018) were shared with clinicians in the clinical grand round. Several take-home messages were discussed in a quiz format, and a number of holistic quality control measures were implemented at different levels. Based on observable changes in blood culture reports, another dataset was analyzed and compared in phase II (April 2018–April 2019). Results: In phase II, the blood culture contamination rate improved from 6 to 2% along with four times reduction in ICU isolates and three times increased isolation of salmonellae and pneumococci. The development of resistance in Klebsiella pneumoniae to carbapenems and piperacillin–tazobactam was reduced. Colistin resistance in ICU isolates hovered around 15%. Vaccine-preventable pneumococcal serotypes were predominant in the under-five age-group. Typhoidal salmonellae were more commonly isolated from adults with 50% showing sensitivity to pefloxacin and 97% to ampicillin, chloramphenicol, and cotrimoxazole. Candida parapsilosis was the leading non-albicans Candida (NAC). Fluconazole resistance was observed in 50% of NAC. Conclusion: Reviewing blood culture data with clinicians mutually helped us to improve the overall quality of blood culture reports. It had a major impact on epidemiological trends and thus, found to be superior to just sharing an antibiogram with the clinicians.


HTML PDF Share
  1. Snyder JW. Blood cultures: the importance of meeting pre-analytical requirements in reducing contamination, optimizing sensitivity of detection, and clinical relevance. Clin Microbiol Rev 2015;37(7):53−57. DOI: 10.1016/j.clinmicnews.2015.03.001.
  2. Brooks D, Polubothu P, Young D, Booth MG, Smith A. Sepsis caused by bloodstream infection in patients in the intensive care unit: the impact of inactive empiric antimicrobial therapy on outcome. J Hosp Infect 2018;98(4):369−374. DOI: 10.1016/j.jhin.2017.09.031.
  3. Wattal C, Javeri Y, Goel N, Dhar D, Saxena S, Singh S, et al. Convergence of minds: for better patient outcome in intensive care unit infections. Indian J Crit Care Med 2017;21(3):46−51. DOI: 10.4103/ijccm.IJCCM_365_16.
  4. Morgan DJ, Malani P, Diekema DJ. Diagnostic Stewardship-Leveraging the laboratory to improve antimicrobial use. JAMA 2017;318(7):607−608. DOI: 10.1001/jama.2017.8531.
  5. Edmiston CE, Garcia R, Barnden M, DeBaun B, Johnson HB. Rapid diagnostics for bloodstream infections: a primer for infection preventionists. Am J Infect Control 2018;46(9):1060−1068. DOI: 10.1016/j.ajic.2018.02.022.
  6. Kalantari A, Rezaie SR. Challenging the one-hour sepsis bundle. West J Emerg Med 2019;20(2):185−190. DOI: 10.5811/westjem.2018.11.39290.
  7. Bouza E, Sousa D, Rodríguez-Créixems M, Lechuz JG, Muñoz P. Is the volume of blood cultured still a significant factor in the diagnosis of bloodstream infections? J Clin Microbiol 2007;45(9):2765−2769. DOI: 10.1128/JCM.00140-07.
  8. Cockerill FR 3rd, Wilson JW, Vetter EA, Goodman KM, Torgerson CA, Harmsen WS, et al. Optimal testing parameters for blood cultures. Clin Infect Dis 2004;38(12):1724−1730. DOI: 10.1086/421087.
  9. Tarai B, Das P, Kumar D, Budhiraja S. Comparative evaluation of paired blood culture (aerobic/aerobic) and single blood culture, along with clinical importance in catheter versus peripheral line at a tertiary care hospital. Indian J Med Microbiol 2012;30(2):187−192. DOI: 10.4103/0255-0857.96689.
  10. Gautam V, Saigal K, Awasthy V, Ray P. Analysis of samples processed in automated blood culture system with blood culture samples processed by conventional manual method. Correspondence. Indian J Med Microbiol 2016;34(3):401−403. DOI: 10.4103/0255-0857.188379.
  11. Gonsalves WI, Cornish N, Moore M, Chen A, Varman M. Effects of volume and site of blood draw on blood culture results. J Clin Microbiol 2009;47(11):3482−3485. DOI: 10.1128/JCM.02107-08.
  12. Wattal C, Goel N. Correction to: pediatric blood cultures and antibiotic resistance: an overview. Indian J Pediatr 2020;87(2):486. DOI: 10.1007/s12098-019-03123-y.
  13. Wilson ML, Mitchell M, Morris AJ, Murray PR, Reimer LG, Reller LB, et al. Principles and procedures for blood cultures; approved guidelines, CLSI document M47-A, vol. 27. Wayne, PA: Clinical and Laboratory Standard Institute; 2007. https://clsi.org/standards/products/microbiology/documents/m47/
  14. Hall KK, Lyman JA. Updated review of blood culture contamination. Clin Microbiol Rev 2006;19(4):788−802. DOI: 10.1128/CMR.00062-05.
  15. Veeraraghavan B, Walia K. Antimicrobial susceptibility profile & resistance mechanisms of Global Antimicrobial Resistance Surveillance System (GLASS) priority pathogens from India. Indian J Med Res 2019;149(2):87−96. DOI: 10.4103/ijmr.IJMR_214_18.
  16. González-López JJ, Piedra-Carrasco N, Salvador F, et al. ESBL-producing Salmonella enterica serovar Typhi in traveler returning from Guatemala to Spain. Emerg Infect Dis 2014;20(11):1918−1920. DOI: 10.3201/eid2011.140525.
  17. Pokharel BM, Koirala J, Dahal RK, Mishra SK, Khadga PK, Tuladhar NR. Multidrug-resistant and extended-spectrum beta-lactamase (ESBL)-producing Salmonella enterica (serotypes Typhi and Paratyphi A) from blood isolates in Nepal: surveillance of resistance and a search for newer alternatives. Int J Infect Dis 2006;10(6):434−438. DOI: 10.1016/j.ijid.2006.07.001.
  18. Gray J, Oppenheim B, Mahida N. Preventing healthcare-associated Gram-negative bloodstream infections. J Hosp Infect 2018;98(3):225−227. DOI: 10.1016/j.jhin.2018.01.008.
  19. Saksena R, Gaind R, Sinha A, Kothari C, Chellani H, Deb M. High prevalence of fluoroquinolone resistance amongst commensal flora of antibiotic naïve neonates: a study from India. J Med Microbiol 2018;67(4):481−488. DOI: 10.1099/jmm.0.000686.
  20. Kaur H, Singh S, Rudramurthy S, Ghosh AK, Jayashree M, Narayana Y, et al. Candidaemia in a tertiary care centre of developing country: monitoring possible change in spectrum of agents and antifungal susceptibility. Indian J Med Microbiol 2020;38(1):110–116. DOI: 10.4103/ijmm.IJMM_20_112.
  21. Cointe A, Walewski V, Hobson CA, et al. Rapid carbapenemase detection with Xpert Carba-R V2 directly on positive blood vials. Infect Drug Resist 2019;12:3311−3316. DOI: 10.2147/IDR.S204436.
  22. Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 2016;8:39. DOI: 10.1186/s13073-016-0294-z.
  23. Hall RA, Noverr MC. Fungal interactions with the human host: exploring the spectrum of symbiosis. Curr Opin Microbiol 2017;40:58−64. DOI: 10.1016/j.mib.2017.10.020.
  24. Daliri EB, Tango CN, Lee BH, Oh DH. Human microbiome restoration and safety. Int J Med Microbiol 2018;308(5):487−497. DOI: 10.1016/j.ijmm.2018.05.002.
  25. Meis JF, Chowdhary A. Candida auris: a global fungal public health threat. Lancet Infect Dis 2018;18(12):1298−1299. DOI: 10.1016/S1473-3099(18)30609-1.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.