Indian Journal of Critical Care Medicine

Register      Login



Volume / Issue

Online First

Related articles

VOLUME 25 , ISSUE 11 ( November, 2021 ) > List of Articles


Cytokine Storm and Immunomodulation in COVID-19

Pradeep Rangappa

Keywords : COVID-19, Cytokine release syndrome, Cytokine storm, Mycobacterium w, Steroids, Tocilizumab

Citation Information : Rangappa P. Cytokine Storm and Immunomodulation in COVID-19. Indian J Crit Care Med 2021; 25 (11):1288-1291.

DOI: 10.5005/jp-journals-10071-24029

License: CC BY-NC 4.0

Published Online: 16-11-2021

Copyright Statement:  Copyright © 2021; The Author(s).


COVID-19 has become a major pandemic in recent times. The exact pathophysiology and understanding of cytokine storm and immunomodulation are evolving. Various cytokines have been implicated in the pathophysiology of COVID-19. Immunosuppressant immunomodulators like steroids, canakinumab, anakinra, tocilizumab, sarilumab, baricitinib, ruxolitinib, bevacizumab, and itolizumab have been tried. Immunostimulant immunomodulators like interferons (IFNs) and Mycobacterium w (Mw) have also been repurposed. Considering the role of multiple cytokines implicated in COVID-19, molecules working on the majority of the targets, may hold a promising future prospect.

  1. Colaneri M, Bogliolo L, Valsecchi P, Sacchi P, Zuccaro V, Brandolino F, et al. Tocilizumab for treatment of severe COVID- 19 patients: preliminary results from SMAtteo COvid19 REgistry (SMACORE). Microorganisms 2020;8(5):695. DOI: 10.3390/microorganisms8050695.
  2. Matricardi PM, Dal Negro RW, Nisini R. The first, holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures. Pediatr Allergy Immunol 2020;31(5):454–470. DOI: 10.1111/pai.13271.
  3. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA 2020;323(18):1824–1836. DOI: 10.1001/jama.2020.6019.
  4. Maggi E, Canonica GW, Moretta L. COVID-19: unanswered questions on immune response and pathogenesis. J Allergy Clin Immunol 2020;146(1):18–22. DOI:10.1016/j.jaci.2020.05.001 [J Allergy Clin Immunol 2020;146(5):1215].
  5. Sinha P, Matthay MA, Calfee CS. Is a “cytokine storm” relevant to COVID-19? JAMA Intern Med 2020;180(9):1152–1154. DOI: 10.1001/jamainternmed.2020.3313.
  6. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020;53:25–32. DOI: 10.1016/j.cytogfr.2020.05.003.
  7. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol 2020;92(4):424–432. DOI: 10.1002/jmv.25685.
  8. de Groot NG, Bontrop RE. COVID-19 pandemic: is a gender-defined dosage effect responsible for the high mortality rate among males? Immunogenetics 2020;72(5):275–277. DOI: 10.1007/s00251-020-01165-7.
  9. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124(4):783–801. DOI: 10.1016/j.cell.2006.02.015.
  10. Grimes JM, Grimes KV. p38 MAPK inhibition: a promising therapeutic approach for COVID-19. J Mol Cell Cardiol 2020;144:63–65. DOI: 10.1016/j.yjmcc.2020.05.007.
  11. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020;53:25–32. DOI: 10.1016/j.cytogfr.2020.05.003.
  12. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science 2020;368(6490):473–474. DOI: 10.1126/science.abb8925.
  13. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, et al. Dexamethasone in hospitalized patients with Covid-19 – preliminary report. N Engl J Med 2021;384(8):693–704. DOI: 10.1056/NEJMoa2021436.
  14. Ucciferri C, Auricchio A, Di Nicola M, Potere N, Abbate A, Cipollone F, et al. Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumatol 2020;2(8):E457. DOI: 10.1016/S2665-9913(20)30167-3.
  15. Huet T, Beaussier H, Voisin O, Jouveshomme S, Dauriat G, Lazareth I, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol 2020;2(7):e393–e400. DOI: 10.1016/S2665-9913(20)30164-8.
  16. Available from: [Accessed on June 30, 2020].
  17. Available from: [Accessed on June 30, 2020].
  18. Omers EC, Eschenauer GA, Troost JP, Golob JL, Gandhi TN, Wang L, et al. Tocilizumab for treatment of mechanically ventilated patients with COVID-19. Clin Infect Dis 2021;73(2):e445–e454. DOI: 10.1093/cid/ciaa954.
  19. F. Hoffmann-La Roche Ltd. Roche provides an update on the phase III COVACTA trial of Actemra/RoActemra in hospitalised patients with severe COVID-19 associated pneumonia (Press release). 2020. Available from:
  20. Magro G. COVID-19: review on latest available drugs and therapies against SARS-CoV-2. Coagulation and inflammation cross-talking. Virus Res 2020;286:198070. DOI: 10.1016/j.virusres.2020.198070. PMID: 32569708; PMCID: PMC7305708.
  21. Mehta Y, Dixit SB, Zirpe KG, Ansari AS. Cytokine storm in novel coronavirus disease (COVID-19): expert management considerations. Indian J Crit Care Med 2020;24(6):429–434. DOI: 10.5005/jp-journals-10071-23415.
  22. Available from: [Accessed on July 30, 2020].
  23. Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev 2020;53:66–70. DOI: 10.1016/j.cytogfr.2020.05.002.
  24. Chinnaiyan AM, Huber-Lang M, Kumar-Sinha C, Barrette TR, Shankar-Sinha S, Sarma VJ, et al. Molecular signatures of sepsis: multiorgan gene expression profiles of systemic inflammation. Am J Pathol 2001;159(4):1199–1209. DOI: 10.1016/S0002-9440(10)62505-9.
  25. Pandey RK, Sodhi A, Biswas SK, Dahiya Y, Dhillon MK. Mycobacterium indicus pranii mediates macrophage activation through TLR2 and NOD2 in a MyD88 dependent manner. Vaccine 2012;30(39):5748–5754. DOI: 10.1016/j.vaccine.2012.07.002.
  26. Kumar P, Das G, Bhaskar S. Mycobacterium indicus pranii therapy induces tumor regression in MyD88- and TLR2-dependent manner. BMC Res Notes 2019;12(1):648. DOI: 10.1186/s13104-019-4679-0.
  27. Desai NM, Khamar BM. Immunotherapy for tuberculous pericarditis. N Engl J Med 2014;371(26):2533–2534. DOI: 10.1056/NEJMc1413185.
  28. Power CA, Wei G, Bretscher PA. Mycobacterial dose defines the Th1/Th2 nature of the immune response independently of whether immunization is administered by the intravenous, subcutaneous, or intradermal route. Infect Immun 1998;66(12):5743–5750. PMID: 9826349.
  29. Ahmad F, Mani J, Kumar P, Haridas S, Upadhyay P, Bhaskar S. Activation of anti-tumor immune response and reduction of regulatory T cells with Mycobacterium indicus pranii (MIP) therapy in tumor bearing mice. PLoS One 2011;6(9):e25424. DOI: 10.1371/journal.pone.0025424. PMID: 1984926; PMCID: PMC3184142.
  30. Das S, Halder K, Goswami A, Chowdhury BP, Pal NK, Majumdar S. Immunomodulation in host-protective immune response against murine tuberculosis through regulation of the T regulatory cell function. J Leukoc Biol 2015;98(5):827–836. DOI: 10.1189/jlb.3A0315-114R. PMID: 26156009.
  31. Kumar P, Tyagi R, Das G, Bhaskar S. Mycobacterium indicus pranii and Mycobacterium bovis BCG lead to differential macrophage activation in Toll-like receptor-dependent manner. Immunology 2014;143(2):258–268. DOI: 10.1111/imm.12306.
  32. Spiegel M, Schneider K, Weber F, Weidmann M, Hufert FT. Interaction of severe acute respiratory syndrome associated coronavirus with dendritic cells. J Gen Virol 2006;87(Pt 7):1953–1960. DOI: 10.1099/vir.0.81624-0.
  33. Kumar P, John V, Marathe S, Das G, Bhaskar S. Mycobacterium indicus pranii induces dendritic cell activation, survival, and Th1/Th17 polarization potential in a TLR-dependent manner. J Leukoc Biol 2015;97(3):511–520. DOI: 10.1189/jlb.1A0714-361R.
  34. Sharma P, Mukherjee R, Talwar GP, Sarathchandra KG, Walia R, Parida SK, et al. Immunoprophylactic effects of the anti-leprosy Mw vaccine in household contacts of leprosy patients: clinical field trials with a follow up of 8-10 years. Lepr Rev 2005;76(2):127–143. PMID: 16038246.
  35. Sharma P, Kar HK, Kaur H, Misra RS, Mukherjee A, Mukherjee R, Rani R. Induction of lepromin positivity and immunoprophylaxis in household contacts of multibacillary leprosy patients: a pilot study with a candidate vaccine, Mycobacterium w. Int J Lepr Other Mycobact Dis 2000;68(2):136–142. PMID: 11036493.
  36. Lawan Y. Tuberculin conversion in HIV seropositives. J Indian Med Assoc 2002;100(10):622–623. PMID: 12452519.
  37. Kharkar R. Immune recovery in HIV with Mycobacterium W. J Indian Med Assoc 2002;100(9):578–579. PMID: 12455393.
  38. Sharma SK, Katoch K, Sarin R, Balambal R, Kumar Jain N, Patel N et al. Efficacy and safety of Mycobacterium indicus pranii as an adjunct therapy in category II pulmonary tuberculosis in a randomized trial. Sci Rep 2017;7(1):3354. DOI: 10.1038/s41598-017-03514-1.
  39. De Lang A, Osterhaus AD, Haagmans BL. Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells. Virology 2006;353(2):474–481. DOI: 10.1016/j.virol.2006.06.011.
  40. Prescribing Information. Sepsivac. Available from: URL: [Accessed on June 5, 2020].
  41. Asiaed Collegium of Medical Education, DCCET, ISCCM Bangalore Chapter; 2020. p. 1–4.
  42. Sehgal IS, Bhalla A, Puri GD, Yaddanapudi LN, Singh M, Malhotra P, et al. Safety of an immunomodulatory Mycobacterium w in COVID-19. Lung India 2020;37(3):279–281. DOI: 10.4103/lungindia.lungindia_242_20.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.