Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 25 , ISSUE S3 ( December, 2021 ) > List of Articles

INVITED ARTICLE

Placenta in the Critically Ill Mother

Keywords : Critical care, Obstetric critical illness, Placenta, Pregnancy

Citation Information :

DOI: 10.5005/jp-journals-10071-24024

License: CC BY-NC 4.0

Published Online: 12-01-2022

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

The placenta is a temporary, multifunctional organ composed of both maternal and fetal components. It maintains homeostasis to ensure the growth of the fetus and well-being of the mother. Abnormalities in placental development have been known to be responsible for several disorders of pregnancy. Conditions coincident with pregnancy can upset the homeostasis and result in critical illness, which can greatly impact placental function and in turn affect the fetus. Decreased blood flow, acidemia, hypercarbia, and hypoxia seen in critically ill pregnant mothers can result in fetal death. Understanding the physiological changes and functioning of the maternal–fetal–placental unit will aid in better management of critically ill mothers.


PDF Share
  1. Maltepe E, Bakardjiev AI, Fisher SJ. The placenta: transcriptional, epigenetic, and physiological integration during development. J Clin Invest 2010;120(4):1016–1025. DOI: 10.1172/JCI41211.
  2. Mossman HW. Comparative morphogenesis of the fetal membranes and accessory uterine structures. Contrib Embryol Carneg Instn 1937;26:129–246. DOI: 10.1016/0143-4004(91)90504-9.
  3. Maltepe E, Fisher SJ. Placenta: the forgotten organ. Annu Rev Cell Dev Biol 2015;31:523–552. DOI: 10.1146/annurev-cellbio-100814-125620.
  4. Soares MJ, Varberg KM, Iqbal K. Hemochorial placentation: development, function, and adaptations. Biol Reprod 2018;99(1):196–211. DOI: 10.1093/biolre/ioy049.
  5. Guntupalli KK, Hall N, Karnad DR, Bandi V, Belfort M. Critical illness in pregnancy: part I: an approach to a pregnant patient in the ICU and common obstetric disorders. Chest 2015;148(4):1093–1104. DOI: 10.1378/chest.14-1998.
  6. Brosens I, Puttemans P, Benagiano G. Placental bed research: I. The placental bed: from spiral arteries remodeling to the great obstetrical syndromes. Am J Obstet Gynecol 2019;221(5):437–456. DOI: 10.1016/j.ajog.2019.05.044.
  7. Huppertz B. The anatomy of the normal placenta. J Clin Pathol 2008;61(12):1296–1302. DOI: 10.1136/jcp.2008.055277.
  8. Aplin JD, Myers JE, Timms K, Westwood M. Tracking placental development in health and disease. Nat Rev Endocrinol 2020;16(9):479–494. DOI: 10.1038/s41574-020-0372-6.
  9. Hu XQ, Zhang L. Hypoxia and mitochondrial dysfunction in pregnancy complications. Antioxidants 2021;10(3):405. DOI: 10.3390/antiox10030405.
  10. Dellschaft NS, Hutchinson G, Shah S, Jones NW, Bradley C, Leach L, et al. The haemodynamics of the human placenta in utero. PLoS Biol 2020;18(5):e3000676. DOI: 10.1371/journal.pbio.3000676.
  11. Harris LK, Benagiano M, D'elios MM, Brosens I, Benagiano G. Placental bed research: II. Functional and immunological investigations of the placental bed. Am J Obstet Gynecol 2019;221(5):457–469. DOI: 10.1016/j.ajog.2019.07.010.
  12. Brosens I. A study of the spiral arteries of the decidua basalis in normotensive and hypertensive pregnancies. BJOG 1964;71(2):222–230. DOI: 10.1111/j.1471-0528.1964.tb04270.x.
  13. De Wolf F, Robertson WB, Brosens I. The ultrastructure of acute atherosis in hypertensive pregnancy. Am J Obstet Gynecol 1975;123(2):164–174. DOI: 10.1016/0002-9378(75)90522-0.
  14. Redman CW. 10 Immunological aspects of pre-eclampsia. Bailliere's Clin Obstet Gynaecol 1992;6(3):601–615. DOI: 10.1016/s0950-3552(05)80012-4.
  15. Ahmed A, Ramma W. Unravelling the theories of pre-eclampsia: are the protective pathways the new paradigm? Br J Pharmacol 2015;172(6):1574–1586. DOI: 10.1111/bph.12977.
  16. Fisher SJ. Why is placentation abnormal in preeclampsia? Am J Obstet Gynecol 2015;213(4):S115–S122. DOI: 10.1016/j.ajog.2015.08.042.
  17. Wallenburg HC, Makovitz JW, Dekker GA, Rotmans P. Low-dose aspirin prevents pregnancy-induced hypertension and pre-eclampsia in angiotensin-sensitive primigravidae. Lancet 1986;327(8471):1–3. DOI: 10.1016/s0140-6736(86)91891-x.
  18. Poston L, Briley AL, Seed PT, Kelly FJ, Shennan AH, Vitamins in Pre-eclampsia (VIP) Trial Consortium. Vitamin C and vitamin E in pregnant women at risk for pre-eclampsia (VIP trial): randomised placebo-controlled trial. Lancet 2006;367(9517):1145–1154. DOI: 10.1016/S0140-6736(06)68433-X.
  19. Villa PM, Kajantie E, Räikkönen K, Pesonen AK, Hämäläinen E, Vainio M, et al. Aspirin in the prevention of pre-eclampsia in high-risk women: a randomised placebo-controlled PREDO Trial and a meta-analysis of randomised trials. BJOG 2013;120(1):64–74. DOI: 10.1111/j.1471-0528.2012.03493.x.
  20. Rossi AC, Mullin PM. Prevention of pre-eclampsia with low-dose aspirin or vitamins C and E in women at high or low risk: a systematic review with meta-analysis. Eur J Obstet Gynecol Reprod Biol 2011;158(1):9–16. DOI: 10.1016/j.ejogrb.2011.04.010.
  21. Naoum EE, Leffert LR, Chitilian HV, Gray KJ, Bateman BT. Acute fatty liver of pregnancy: pathophysiology, anesthetic implications, and obstetrical management. Anesthesiology 2019;130(3):446–461. DOI: 10.1097/ALN.0000000000002597.
  22. Bacq Y. Liver diseases unique to pregnancy: a 2010 update. Clin Res Hepatol Gastroenterol 2011;35(3):182–193. DOI: 10.1016/j.clinre.2010.11.011.
  23. Natarajan SK, Thangaraj KR, Eapen CE, Ramachandran A, Mukhopadhya A, Mathai M, et al. Liver injury in acute fatty liver of pregnancy: possible link to placental mitochondrial dysfunction and oxidative stress. Hepatology 2010;51(1):191–200. DOI: 10.1002/hep.23245.
  24. Kourtis AP, Read JS, Jamieson DJ. Pregnancy and infection. N Engl J Med 2014;370(23):2211–2218. DOI: 10.1056/NEJMra1213566.
  25. Weckman AM, Ngai M, Wright J, McDonald CR, Kain KC. The impact of infection in pregnancy on placental vascular development and adverse birth outcomes. Front Microbiol 2019;10:1924. DOI: 10.3389/fmicb.2019.01924.
  26. Rendell V, Bath NM, Brennan TV. Medawar's paradox and immune mechanisms of fetomaternal tolerance. OBM Transplant 2020;4(1):26. DOI: 10.21926/obm.transplant.2001104.
  27. Bilbo SD, Schwarz JM. Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci 2009;3:14. DOI: 10.3389/neuro.08.014.2009.
  28. Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol 2010;63(6):425–433. DOI: 10.1111/j.1600-0897.2010.00836.x.
  29. Cardenas I, Aldo P, Koga K, Means R, Lang S, Mor G. Subclinical viral infection in pregnancy leads to inflammatory process at the placenta with non-lethal fetal damage: S-12. Am J Reprod Immunol 2009;61(6):397. DOI: 10.4049/jimmunol.1000289.
  30. Romero R, Gotsch F, Pineles B, Kusanovic JP. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev 2007;65(suppl_3):S194–S202. DOI: 10.1111/j.1753-4887.2007.tb00362.x.
  31. Gomez R, Romero R, Ghezzi F, Yoon BH, Mazor M, Berry SM. The fetal inflammatory response syndrome. Am J Obstet Gynecol 1998;179(1):194–202. DOI: 10.1016/s0002-9378(98)70272-8.
  32. Shanes ED, Mithal LB, Otero S, Azad HA, Miller ES, Goldstein JA. Placental pathology in COVID-19. Am J Clin Pathol 2020;154(1):23–32. DOI: 10.1093/ajcp/aqaa089.
  33. Aoyama K, Seaward PG, Lapinsky SE. Fetal outcome in the critically ill pregnant woman. Crit Care 2014;18(3):1–7. DOI: 10.1186/cc13895.
  34. Barta E. Lactate transport at the uteroplacental unit – a theoretical study. bioRxiv 2020. DOI: 10.1101/2020.10.23.351841.
  35. Carter AM. Placental gas exchange and the oxygen supply to the fetus. Compr Physiol 2011;5(3):1381–1403. DOI: 10.1002/cphy.c140073.
  36. Omo-Aghoja L. Maternal and fetal acid-base chemistry: a major determinant of perinatal outcome. Ann Med Health Sci Res 2014;4(1):8–17. DOI: 10.4103/2141-9248.126602.
  37. Parer JT. Effects of hypoxia on the mother and fetus with emphasis on maternal air transport. Am J Obstet Gynecol 1982;142(8):957–961. DOI: 10.1016/0002-9378(82)90774-8.
  38. Parer JT. The effect of acute maternal hypoxia on fetal oxygenation and the umbilical circulation in the sheep. Eur J Obstet Gynecol Reprod Biol 1980;10(2):125–136. DOI: 10.1016/0028-2243(80) 90090-8.
  39. Howard RB, Hosokawa T, Maguire MH. Hypoxia-induced fetoplacental vasoconstriction in perfused human placental cotyledons. Am J Obstet Gynecol 1987;157(5):1261–1266. DOI: 10.1016/s0002-9378(87)80307-1.
  40. Hampl V, Bíbová J, Stranák Z, Wu X, Michelakis ED, Hashimoto K, et al. Hypoxic fetoplacental vasoconstriction in humans is mediated by potassium channel inhibition. Am J Physiol Heart Circ Physiol 2002;283(6):H2440–H2449. DOI: 10.1152/ajpheart.01033.2001.
  41. Byrne BM, Howard RB, Morrow RJ, Whiteley KJ, Adamson SL. Role of the L-arginine nitric oxide pathway in hypoxic fetoplacental vasoconstriction. Placenta 1997;18(8):627–634. DOI: 10.1016/s0143-4004(97)90003-5.
  42. Wareing M. Oxygen sensitivity, potassium channels, and regulation of placental vascular tone. Microcirculation 2014;21(1):58–66. DOI: 10.1111/micc.12069.
  43. Ali TY, Broughton Pipkin F, Khan RN. The effect of pH and ion channel modulators on human placental arteries. PLoS One 2014;9(12):e114405. DOI: 10.1371/journal.pone.0114405.
  44. DeLuca L, Holzman I, Gibbs K. Newborn ventilatory response to maternal chronic hypercapnia. J Perinatol 2012;32(10):804–806. DOI: 10.1038/jp.2011.164.
  45. Wilkening RB, Meschia GI. Fetal oxygen uptake, oxygenation, and acid-base balance as a function of uterine blood flow. Am J Physiol 1983;244(6):H749–H755. DOI: 10.1152/ajpheart.1983.244.6.H749.
  46. Fishburne JI, Meis PJ, Urban RB, Greiss FC, Wheeler AS, James FM, et al. Vascular and uterine responses to dobutamine and dopamine in the gravid ewe. Am J Obstet Gynecol 1980;137(8):944–952. DOI: 10.1016/s0002-9378(16)32836-8.
  47. Santos AC, Baumann AL, Wlody D, Pedersen H, Morishima HO, Finster M. The maternal and fetal effects of milrinone and dopamine in normotensive pregnant ewes. Am J Obstet Gynecol 1992;166(1):257–262. DOI: 10.1016/0002-9378(92)91869-C.
  48. Hu H, Pasca I. Management of complex cardiac issues in the pregnant patient. Crit Care Clin 2016;32(1):97–107. DOI: 10.1016/j.ccc.2015.08.004.
  49. James III FM. Greiss FC Jr, Kemp RA. An evaluation of vasopressor therapy for maternal hypotension during spinal anesthesia. Anesthesiology 1970;33(1):25–34. DOI: 10.1097/00000542-197007000-00010.
  50. Kee WD, Lee A, Khaw KS, Ng FF, Karmakar MK, Gin T. A randomized double-blinded comparison of phenylephrine and ephedrine infusion combinations to maintain blood pressure during spinal anesthesia for cesarean delivery: the effects on fetal acid-base status and hemodynamic control. Anesth Analg 2008;107(4):1295–1302. DOI: 10.1213/ane.0b013e31818065bc.
  51. Kapoor MC. Cardiopulmonary bypass in pregnancy. Ann Card Anaesth 2014;17(1):33. DOI: 10.4103/0971-9784.124133.
  52. Thinkhamrop J, Hofmeyr GJ, Adetoro O, Lumbiganon P, Ota E. Antibiotic prophylaxis during the second and third trimester to reduce adverse pregnancy outcomes and morbidity. Cochrane Database Syst Rev 2015;1:CD002250. DOI: 10.1002/14651858.CD002250.pub2.
  53. Bookstaver PB, Bland CM, Griffin B, Stover KR, Eiland LS, McLaughlin M. A review of antibiotic use in pregnancy. Pharmacotherapy 2015;35(11):1052–1062. DOI: 10.1002/phar.1649.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.