Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 26 , ISSUE 5 ( May, 2022 ) > List of Articles

Original Article

Clinical Profile of Patients with Severe Acute Respiratory Syndrome Coronavirus 2 Infection Developing Pulmonary Barotrauma on Mechanical Ventilation

Ketan V Kargirwar, Darshana Rathod, Vivek Kumar, Mayur Patel, Mehul Shah, Himanshu Choudhury, Kavita Shalia

Keywords : Barotrauma, ICU, Mechanical ventilation, Severe acute respiratory syndrome coronavirus 2

Citation Information : Kargirwar KV, Rathod D, Kumar V, Patel M, Shah M, Choudhury H, Shalia K. Clinical Profile of Patients with Severe Acute Respiratory Syndrome Coronavirus 2 Infection Developing Pulmonary Barotrauma on Mechanical Ventilation. Indian J Crit Care Med 2022; 26 (5):611-616.

DOI: 10.5005/jp-journals-10071-24149

License: CC BY-NC 4.0

Published Online: 30-04-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Background: There is limited information on clinical profile and outcomes of patients on mechanical ventilation (MV) who developed pulmonary barotrauma (PBT) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Patients and methods: In a retrospective observational study, all SARS-CoV-2 pneumonia patients admitted from March 28, 2020, to August 31, 2020, at Sir HN Reliance Foundation Hospital and Research Center and Seven Hills Hospital (Reliance Facility), Mumbai, India, of 18 years and above on MV and developed PBT, were included. Results: A total of 14 SARS-CoV-2 patients of 45 on MV (31.0%) developed PBT of 1,029 hospitalized. All patients were male and divided as per admission into PaO2/FiO2 (P/F) ≤100 (median 80) and P/F >100 (median 222) group. Pneumothorax developed in seven and six cases of P/F ≤100 and P/F >100 groups, respectively. Three patients in each group developed subcutaneous emphysema, while four developed pneumomediastinum in P/F >100 group. Twelve patients (7, P/F ≤100, and 5, P/F >100) were on invasive, while two (P/F >100) were on noninvasive MV. The mean P/F on the day of PBT was reduced by 27.5 and 65.3%, while peak inspiratory pressure was elevated with a median of 36 and 28 cm H2O in P/F ≤100 and P/F >100 groups, respectively. The median highest tidal volume (420 mL), positive-end expiratory pressure (8 vs 6 cm H2O) on the day of PBT, and length of hospital stay (11 vs 25 days) did not differ between two groups. Survival was 28.6% (4/14). Conclusion: SARS-CoV-2 patients requiring MV with PBT had poor outcomes. Clinicians should be vigilant about the diagnosis of PBT.


PDF Share
  1. Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. Journal of the American Medical Association 2020;323(22):2329–2330. DOI: 10.1001/jama.2020.6825.
  2. Diaz R, Heller D. Barotrauma and mechanical ventilation. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021. PMID: 31424810.
  3. Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiumello D. COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med 2020;201(10):1299–1300. DOI: 10.1164/rccm.202003-0817LE.
  4. Anzueto A, Frutos-Vivar F, Esteban A, Alia I, Brochard L, Stewart T, et al. Incidence, risk factors and outcome of barotrauma in mechanically ventilated patients. Intensive Care Med 2004;30:612–619. DOI: 10.1007/s00134-004-2187-7.
  5. Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective–ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998;338(6):347–354. DOI: 10.1056/NEJM199802053380602.
  6. Abdallat M, Khalil M, Al-Awwa G, Kothuru R, Punzina CL. Barotrauma in COVID-19 patients. J Lung Health Dis 2020;4(2):8–12. DOI: 10.29245/2689-999x/2020/2.1163.
  7. Hoo GW. Barotrauma and mechanical ventilation. Updated: 2018. Available from: http://www.emedicine.medscape.com/article/296625-overview.
  8. Weg JG, Anzueto A, Balk RA, Wiedemann HP, Pattishall EN, Schork MA, et al. The relation of pneumothorax and other air leaks to mortality in the acute respiratory distress syndrome. N Engl J Med 1998;338(6):341–346. DOI: 10.1056/NEJM199802053380601.
  9. Sun R, Liu H, Wang X. Mediastinal emphysema, Giant Bulla, and pneumothorax developed during the course of COVID-19 pneumonia. Korean J Radiol 2020;21:541–544. DOI: 10.3348/kjr.2020.0180.
  10. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395(10223):507–513. DOI: 10.1016/S0140-6736(20)30211-7.
  11. UK Government. Coronavirus (COVID-19) in the UK. Updated: 2020. Available from: https://coronavirusstaging.data.gov.uk/.
  12. Zhou C, Gao C, Xie Y, Xu M. COVID-19 with spontaneous pneumomediastinum. Lancet Infect Dis 2020;20(4):510. DOI: 10.1016/S1473-3099(20)30156-0.
  13. López Vega JM, Parra Gordo ML, Diez Tascón A, Ossaba Vélez S. Pneumomediastinum and spontaneous pneumothorax as an extrapulmonary complication of COVID-19 disease. Emerg Radiol 2020:1–4. DOI: 10.1007/s10140-020-01806-0.
  14. McGuinness G, Zhan C, Rosenberg N, Azour L, Wickstrom M, Mason DM, et al. High incidence of barotrauma in patients with COVID-19 infection on invasive mechanical ventilation. Radiology 2020:202352. DOI: 10.1148/radiol.2020202352.
  15. Aiolfi A, Biraghi T, Montisci A, Bonitta G, Micheletto G, Donatelli F, et al. Management of persistent pneumothorax with thoracoscopy and bleb resection in COVID-19 patients. Ann Thorac Surg 2020;110(5):e413–e415. DOI: 10.1016/j.athoracsur.2020.04.011.
  16. Wang W, Gao R, Zheng Y, Jiang L. COVID-19 with spontaneous pneumothorax, pneumomediastinum and subcutaneous emphysema. J Travel Med 2020;27(5):taaa062. DOI: 10.1093/jtm/taaa062.
  17. Pattupara A, Modi V, Goldberg J, Ho KS, Bhatia K, Herrera Y, et al. Pulmonary barotrauma during noninvasive ventilation in patients with covid-19. Chest Infect 2020;158(4 Suppl):A337. DOI: 10.1016/j.chest.2020.08.334.
  18. Boussarsar M, Thierry G, Jaber S, Roudot-Thoraval F, Lemaire F, Brochard L. Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome. Intensive Care Med 2002;28:406–413. DOI: 10.1007/s00134-001-1178-1.
  19. Gammon RB, Shin MS, Buchalter SE. Pulmonary barotrauma in mechanical ventilation. Chest 1992;102:568–572. DOI: 10.1378/chest.102.2.568.
  20. Eisner MD, Thompson BT, Schoenfeld D, Anzueto A, Matthay MA. Airway pressures and early barotrauma in patients with acute lung injury and acute respiratory distress syndrome. Am J Respir Crit Care Med 2002;165:978–982. DOI: 10.1164/ajrccm.165.7.2109059.
  21. Petrucci N, Iacovelli W. The acute respiratory distress syndrome network, ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. Cochrane Database Syst Rev 2004;342(2):CD003844. DOI: 10.1002/14651858.CD003844.pub2.
  22. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutierrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis 2020;34:101623. DOI: 10.1016/j.tmaid.2020.101623.
  23. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘cytokine storm’ in COVID-19. J Inf Secur 2020;80:607–613. DOI: 10.1016/j.jinf.2020.03.037.
  24. Qin C, Zhou L, Hu Z, Zhang S, Zhang S, Yang S, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020;71(15):762–768. DOI: 10.1093/cid/ciaa248.
  25. Macklin CC. Transport of air along sheaths of pulmonic blood vessels from alveoli to mediastinum: clinical implications. Arch Intern Med 1939;64:913. DOI: 10.1001/archinte.1939.00190050019003.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.