Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 26 , ISSUE S2 ( October, 2022 ) > List of Articles

GUIDELINES

ISCCM Guidelines for Hemodynamic Monitoring in the Critically Ill

Atul Prabhakar Kulkarni, Shrikanth Srinivasan, Sameer Arvind Jog, Sheila Nainan Myatra

Keywords : Arterial lactate, Cardiac output measurement, Central venous oxygen saturation, Critically ill adults, Echocardiography, Hemodynamic monitoring, Static parameters, Thermodilution cardiac output, Transpulmonary thermodilution

Citation Information :

DOI: 10.5005/jp-journals-10071-24301

License: CC BY-NC 4.0

Published Online: 31-10-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Hemodynamic assessment along with continuous monitoring and appropriate therapy forms an integral part of management of critically ill patients with acute circulatory failure. In India, the infrastructure in ICUs varies from very basic facilities in smaller towns and semi-urban areas, to world-class, cutting-edge technology in corporate hospitals, in metropolitan cities. Surveys and studies from India suggest a wide variation in clinical practices due to possible lack of awareness, expertise, high costs, and lack of availability of advanced hemodynamic monitoring devices. We, therefore, on behalf of the Indian Society of Critical Care Medicine (ISCCM), formulated these evidence-based guidelines for optimal use of various hemodynamic monitoring modalities keeping in mind the resource-limited settings and the specific needs of our patients. When enough evidence was not forthcoming, we have made recommendations after achieving consensus amongst members. Careful integration of clinical assessment and critical information obtained from laboratory data and monitoring devices should help in improving outcomes of our patients.


PDF Share
  1. Harris CRS. Galen's Pulse-Lore. The Heart and the Vascular System in Ancient Greek Medicine from Alcmaeon to Galen. Oxford, UK: Clarendon Press; 1973.
  2. Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today's critically ill patients. Crit Care Med 2006; 34(5):1297–1310. DOI: 10.1097/01.CCM.0000215112.84523.F0.
  3. Higgins TL, Teres D, Copes WS, Nathanson BH, Stark M, Kramer AA. Assessing contemporary intensive care unit outcome: An updated Mortality Probability Admission Model (MPM0-III). Crit Care Med 2007;35(3):827–835. DOI: 10.1097/01.CCM.0000257337.63529.9F.
  4. Kulkarni AP, Zirpe KG, Dixit SB, Chaudhry D, Mehta Y, Mishra RC, et al. Development of critical care medicine in India. J Crit Care 2020;56:188–196. DOI: 10.1016/j.jcrc.2019.11.017.
  5. Divatia JV, Amin PR, Ramakrishnan N, Kapadia FN, Todi S, Sahu S, et al. Intensive care in India: The Indian intensive care case mix and practice patterns study. Indian J Crit Care Med 2016;20(4):216–225. DOI: 10.4103/0972-5229.180042.
  6. Divatia JV, Mehta Y, Govil D, Zirpe K, Amin PR, Ramakrishnan N, et al. Intensive Care in India in 2018–2019: The second Indian intensive care case mix and practice patterns study. Indian J Crit Care Med 2021;25(10):1093–1107. DOI: 10.5005/jp-journals-10071- 23965.
  7. Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, et al. Grading quality of evidence and strength of recommendations. BMJ 2004;328(7454):1490. DOI: 10.1136/bmj.328.7454.1490.
  8. Bonanno FG. Clinical pathology of the shock syndromes. J Emerg Trauma Shock 2011;4(2):233–243. DOI:10.4103/0974-2700.82211.
  9. Schlichtig R, Kramer DJ, Pinsky MR. Flow redistribution during progressive hemorrhage is a determinant of critical O2 delivery. J Appl Physiol (1985) 1991;70(1):169–178. DOI: 10.1152/jappl.1991.70.1.169.
  10. Joly HR, Weil MH. Temperature of the great toe as an indication of the severity of shock. Circulation 1969;39(1):131–138. DOI: 10.1161/01.cir.39.1.131.
  11. Hernandez G, Pedreros C, Veas E, Bruhn A, Romero C, Rovegno M, et al. Evolution of peripheral vs metabolic perfusion parameters during septic shock resuscitation. A clinical-physiologic study. J Crit Care 2012;27(3):283–288. DOI: 10.1016/j.jcrc.2011.05.024.
  12. Ait-Oufella H, Bige N, Boelle PY, Pichereau C, Alves M, Bertinchamp R. Capillary refill time exploration during septic shock. Intensive Care Med 2014;40(7):958–964. DOI: 10.1007/s00134-014-3326-4.
  13. Lara B, Enberg L, Ortega M, Leon P, Kripper C, Aguilera P. Capillary refill time during fluid resuscitation in patients with sepsis-related hyperlactatemia at the emergency department is related to mortality. PLoS One 2017;12(11):e0188548. DOI: 10.1371/journal.pone.0188548.
  14. Castro R, Kattan E, Ferri G, Pairumani R, Valenzuela ED, Alegría L, et al. Effects of capillary refill time-vs. lactate-targeted fluid resuscitation on regional, microcirculatory and hypoxia-related perfusion parameters in septic shock: A randomized controlled trial. Ann Intensive Care 2020;10(1):150. DOI: 10.1186/s13613-020-00767-4.
  15. Hernández G, Ospina-Tascón GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: The ANDROMEDA-SHOCK randomized clinical trial. JAMA 2019;321(7):654–664. DOI: 10.1001/jama.2019.0071.
  16. Sheridan DC, Cloutier RL, Samatham R, Hansen ML. Point-of-care capillary refill technology improves accuracy of peripheral perfusion assessment. Front Med (Lausanne) 2021;8:694241. DOI:10.3389/fmed.2021.694241.
  17. Gofton TE, Young GB. Sepsis-associated encephalopathy. Nat Rev Neurol 2012;8(10):557–566. DOI: 10.1038/nrneurol.2012.183.
  18. Kataja A, Tarvasmäki T, Lassus J, Køber L, Sionis A, Spinar A, et al. Altered mental status predicts mortality in cardiogenic shock– Results from the CardShock study. Eur Heart J Acute Cardiovasc Care 2018;7(1):38–44. DOI: 10.1177/2048872617702505.
  19. Legrand M, Payen D. Understanding urine output in critically ill patients. Ann Intensive Care 2011;1(1):13. DOI:10.1186/2110-5820-1-13.
  20. Vincent JL, Ferguson A, Pickkers P, Jakob SM, Jaschinski U, Almekhlafi GA, et al. The clinical relevance of oliguria in the critically ill patient: analysis of a large observational database. Crit Care 2020;24(1):171. DOI:10.1186/s13054-020-02858-x.
  21. Ait-Oufella H, Lemoinne S, Boelle PY, Galbois A, Baudel JL, Lemant J, et al. Mottling score predicts survival in septic shock. Intensive Care Med 2011;37(5):801–807. DOI: 10.1007/s00134-011-2163-y.
  22. Levy MM, Evans LE, Rhodes A. The surviving sepsis Campaign Bundle: 2018 update. Intensive Care Med. 2018;44(6):925–928.
  23. Allen M. Lactate and acid base as a hemodynamic monitor and markers of cellular perfusion. Pediatr Crit Care Med 2011;12 (4 Suppl):S43–S49. DOI: 10.1097/PCC.0b013e3182211aed.
  24. Greenwood JC, Orloski CJ. End points of sepsis resuscitation. Emerg Med Clin North Am 2017;35(1):93–107. DOI: 10.1016/j.emc.2016.09.001.
  25. Broder G, Weil MH. Excess lactate: An index of reversibility of shock in human patients. Science 1964;143(3613):1457–1459. DOI: 10.1126/science.143.3613.1457.
  26. Vincent JL, Dufaye P, Berré J, Leeman M, Degaute JP, Kahn RJ. Serial lactate determinations during circulatory shock. Crit Care Med 1983;11(6):449–451. DOI: 10.1097/00003246-198306000-00012.
  27. Vincent JL, Quintairos E Silva A, Couto Jr L, Taccone FS. The value of blood lactate kinetics in critically ill patients: A systematic review. Crit Care 2016;20(1):257. DOI: 10.1186/s13054-016-1403-5.
  28. Berend K. Diagnostic use of base excess in acid-base disorders. N Engl J Med 2018;378(15):1419–1428. DOI: 10.1056/NEJMra1711860.
  29. Connelly CR, Schreiber MA. Endpoints in resuscitation. Curr Opin Crit Care 2015;21(6):512–519. DOI: 10.1097/MCC.0000000000000248.
  30. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345(19):1368–1377. DOI: 10.1056/NEJMoa010307.
  31. Angus DC, Barnato AE, Bell D, Bellomo R, Chong C-R, Coats TJ, et al. A systematic review and meta-analysis of early goal-directed therapy for septic shock: The ARISE, ProCESS and ProMISe Investigators. Intensive Care Med 2015;41(9):1549–1560. DOI: 10.1007/s00134-015-3822-1.
  32. Cohn JN. Blood pressure measurement in shock: Mechanism of inaccuracy in auscultatory and palpatory methods. JAMA 1967;199(13):972–976. DOI:10.1001/jama.1967.03120130058009.
  33. Meidert AS, Dolch ME, Mühlbauer K, Zwissler B, Klien M, Briegel J, et al. Oscillometric versus invasive blood pressure measurement in patients with shock: A prospective observational study in the emergency department. J Clin Monit Comput 2021;35(2):387–393. DOI: 10.1007/s10877-020-00482-2.
  34. Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki L-M, Pettilä V. Hemodynamic variables related to outcome in septic shock. Intensive Care Med 2005;31(8):1066–1071. DOI: 10.1007/s00134-005-2688-z.
  35. Dünser MW, Takala J, Ulmer H, Mayr VD, Luckner G, Jochberger S, et al. Arterial blood pressure during early sepsis and outcome. Intensive Care Med 2009;35(7):1225–1233. DOI: 10.1007/s00134-009-1427-2.
  36. Dünser MW, Ruokonen E, Pettilä V, Ulmer H, Torgersen C, Schmittinger CA, et al. Association of arterial blood pressure and vasopressor load with septic shock mortality: A post hoc analysis of a multicenter trial. Crit Care 2009;13(6):R181. DOI: 10.1186/cc8167.
  37. Asfar P, Meziani F, Hamel J-F, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med 2014;370(17):1583–1593. DOI: 10.1056/NEJMoa1312173.
  38. Lamontagne F, Meade MO, Hébert PC, Asfar P, Lauzier F, Seely AJE, et al. Canadian Critical Care Trials Group. Higher versus lower blood pressure targets for vasopressor therapy in shock: A multicentre pilot randomized controlled trial. Intensive Care Med 2016;42(4):542–550. DOI: 10.1007/s00134-016-4237-3.
  39. Andreis DT, Singer M. Catecholamines for inflammatory shock: A Jekyll-and-Hyde conundrum. Intensive Care Med 2016;42(9): 1387–1397. DOI: 10.1007/s00134-016-4249-z.
  40. Lamontagne F, Day AG, Meade MO, Cook DJ, Guyatt GH, Hylands M, et al. Pooled analysis of higher versus lower blood pressure targets for vasopressor therapy septic and vasodilatory shock. Intensive Care Med 2018;44(1):12–21. DOI: 10.1007/s00134-017-5016-5.
  41. De Backer D, Giglioli S. Echocardiographic approach to shock. J Emerg Crit Care Med 2019;3:35. DOI: 10.21037/jeccm.2019.07.06.
  42. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 2014;40(12):1795–1815. DOI: 10.1007/s00134-014-3525-z.
  43. Perera P, Mailhot T, Riley D, Mandavia D. The RUSH exam: Rapid Ultrasound in SHock in the evaluation of the critically ill. Emerg Med Clin North Am 2010;28(1):29–56, vii. DOI: 10.1016/j.emc.2009.09.010.
  44. Rahulkumar HH, Bhavin PR, Shreyas KP, Krunalkumar HP, Atulkumar S, Bansari C. Utility of point-of-care ultrasound in differentiating causes of shock in resource-limited setup. J Emerg Trauma Shock 2019;12(1):10–17. DOI: 10.4103/JETS.JETS_61_18.
  45. Keikha M, Salehi-Marzijarani M, Soldoozi Nejat R, Sheikh Motahar Vahedi H, Mirrezaie SM. Diagnostic accuracy of rapid ultrasound in shock (RUSH) exam: A systematic review and meta-analysis. Bull Emerg Trauma 2018;6(4):271–278. DOI: 10.29252/beat-060402.
  46. Mekontso Dessap A, Proost O, Boissier F, Louis B, Roche Campo F, Brochard L. Transesophageal echocardiography in prone position during severe acute respiratory distress syndrome. Intensive Care Med 2011;37(3):430–434. DOI: 10.1007/s00134-010-2114-z.
  47. Blaivas M. Transesophageal echocardiography during cardiopulmonary arrest in the emergency department. Resuscitation 2008;78(2):135–140. DOI: 10.1016/j.resuscitation.2008.02.021.
  48. Hartnell G, Costello P. The diagnosis of thoracic aortic dissection by noninvasive imaging procedures. N Engl J Med 1993;328(22):1637. DOI: 10.1056/NEJM199306033282213.
  49. Vieillard-Baron A, Qanadli SD, Antakly Y, Fourme T, Loubières Y, Jardin F, et al. Transesophageal echocardiography for the diagnosis of pulmonary embolism with acute cor pulmonale: A comparison with radiological procedures. Intensive Care Med 1998;24(5):429–433. DOI: 10.1007/s001340050591.
  50. Vignon P, Mentec H, Terré S, Gastinne H, Guéret P, Lemaire F. Diagnostic accuracy and therapeutic impact of transthoracic and transesophageal echocardiography in mechanically ventilated patients in the ICU. Chest 1994; 106(6):1829–1834. DOI: 10.1378/chest.106.6.1829.
  51. Charron C, Vignon P, Prat G, Tonnelier A, Aegerter P, Boles J-M, et al. Number of supervised studies required to reach competence in advanced critical care transesophageal echocardiography. Intensive Care Med 2013;39(6):1019–1024. DOI: 10.1007/s00134-013-2838-7.
  52. Hüttemann E, Schelenz C, Kara F, Chatzinikolaou K, Reinhart K. The use and safety of transoesophageal echocardiography in the general ICU–A minireview. Acta Anaesthesiol Scand 2004;48(7):827–836. DOI: 10.1111/j.0001-5172.2004.00423.x.
  53. Cecconi M, Hofer C, Teboul J-L, Pettila V, Wilkman E, Molnar Z, et al. Fluid challenges in intensive care—the FENICE study: A global inception cohort study. Intensive Care Med 2015;41(9):1529–1537. DOI: 10.1007/s00134-015-3850-x.
  54. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med 2013;41(7):1774–1781. DOI: 10.1097/CCM.0b013e31828a25fd.
  55. Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 2007;35(1):64–68. DOI: 10.1097/01.CCM.0000249851.94101.4F.
  56. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: A critical analysis of the evidence. Chest 2002;121(6):2000–2008. DOI: 10.1378/chest.121.6.2000.
  57. Eskesen TG, Wetterslev M, Perner A. Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med 2016;42(3): 324–332. DOI: 10.1007/s00134-015-4168-4.
  58. Chen H, Zhu Z, Zhao C, Guo H, Chen D, Wei Y, et al. Central venous pressure measurement is associated with improved outcomes in septic patients: an analysis of the MIMIC-III database. Crit Care 2020;24(1):433. DOI: 10.1186/s13054-020-03109-9.
  59. Cecconi M, Parsons AK, Rhodes A. What is a fluid challenge? Curr Opin Crit Care 2011;17(3):290–295. DOI: 10.1097/MCC.0b013e32834699cd.
  60. Aya HD, Rhodes A, Chis Ster I, Fletcher N, Grounds RM, Cecconi M. Hemodynamic effect of different doses of fluids for a fluid challenge: A quasi-randomized controlled study. Crit Care Med 2017;45(2): e161–e168. DOI: 10.1097/CCM.0000000000002067.
  61. Muller L, Toumi M, Bousquet PJ, Riu-Poulenc B, Louart G, Candela D, et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: The mini-fluid challenge study. Anesthesiology 2011;115(3):541–547. DOI: 10.1097/ALN.0b013e318229a500.
  62. Shi R, Monnet X, Teboul J-L. Parameters of fluid responsiveness. Curr Opin Crit Care 2020;26(3):319–326. DOI: 10.1097/MCC.0000 000000000723.
  63. Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul JL, et al. The changes in pulse pressure variation or stroke volume variation after a “Tidal Volume Challenge” reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med 2017;45(3):415–421. DOI: 10.1097/CCM.0000000000002183.
  64. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: A systematic review of the literature. Crit Care Med 2009;37(9):2642–2647. DOI: 10.1097/CCM.0b013e3181a590da.
  65. Hong JQ, He HF, Chen ZY, Du ZS, Liu WF, Weng PQ, et al. Comparison of stroke volume variation with pulse pressure variation as a diagnostic indicator of fluid responsiveness in mechanically ventilated critically ill patients. Saudi Med J 2014;35(3):261–268. PMID: 24623206.
  66. Yang X, Du B. Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Crit Care 2014;18(6):650. DOI: 10.1186/s13054-014-0650-6.
  67. Si X, Song X, Lin Q, Nie Y, Zhang G, Xu H, et al. Does end expiratory occlusion test predict fluid responsiveness in mechanically ventilated patients? A systematic review and meta-analysis. Shock 2020;54(6):751–760. DOI: 10.1097/SHK.0000000000001545.
  68. Messina A, Dell'Anna A, Baggiani M, Torrini F, Maresca GM, Bennett V, et al. Functional hemodynamic tests: A systematic review and a meta-analysis on the reliability of the end-expiratory occlusion test and of the mini-fluid challenge in predicting fluid responsiveness. Crit Care 2019;23(1):264. DOI: 10.1186/s13054-019-2545-z.
  69. Vignon P, Repessé X, Bégot E, Léger J, Jacob C, Bouferrache K, et al. Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients. Am J Respir Crit Care Med 2017;195(8):1022–1032. DOI: 10.1164/rccm.201604-0844OC.
  70. Das SK, Choupoo NS, Pradhan D, Saikia P, Monnet X. Diagnostic accuracy of inferior vena caval respiratory variation in detecting fluid unresponsiveness: A systematic review and meta-analysis. Eur J Anaesthesiol 2018; 35(11):831–839. DOI: 10.1097/EJA. 0000000000000841.
  71. Alvarado Sánchez JI, Caicedo Ruiz JD, Diaztagle Fernández JJ, Amaya Zuñiga WF, Ospina-Tascón GA, Cruz Martínez LE. Predictors of fluid responsiveness in critically ill patients mechanically ventilated at low tidal volumes: Systematic review and meta-analysis. Ann Intensive Care 2021;11(1):28. DOI: 10.1186/s13613-021-00817-5.
  72. Iqbal MA, Gupta M. Cardiogenic pulmonary edema. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021.
  73. Lee WL, Slutsky AS. Sepsis and endothelial permeability. N Engl J Med 2010;363(7):689–691. DOI: 10.1056/NEJMcibr1007320.
  74. Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 2003;124(5):1900–1908. DOI: 10.1378/chest.124.5.1900.
  75. Michard F. Bedside assessment of extravascular lung water by dilution methods: Temptations and pitfalls. Crit Care Med 2007;35(4): 1186–1192. DOI: 10.1097/01.CCM.0000259539.49339.66.
  76. Chew MS, Ihrman L, During J, Bergenzaun L, Ersson A, Undén J, et al. Extravascular lung water index improves the diagnostic accuracy of lung injury in patients with shock. Crit Care 2012;16(1):R1. DOI: 10.1186/cc10599.
  77. Zhang Z, Lu B, Ni H. Prognostic value of extravascular lung water index in critically ill patients: A systematic review of the literature. J Crit Care 2012;27(4):420.e1–420.e8. DOI: 10.1016/j.jcrc.2011.09.006.
  78. Kushimoto S, Taira Y, Kitazawa Y, Okuchi K, Sakamoto T, Ishikura H, et al. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: A prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome. Crit Care 2012;16(6):R232. DOI: 10.1186/cc11898.
  79. Mayr U, Lukas M, Habenicht L, Wiessner J, Heilmaier M, Ulrich J, et al. B-lines scores derived from lung ultrasound provide accurate prediction of extravascular lung water index: An observational study in critically ill patients. J Intensive Care Med 2022;37(1):21–31. DOI:10.1177/0885066620967655.
  80. Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul JL. Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med 2007;33(3):448–453. DOI: 10.1007/s00134-006-0498-6.
  81. Schefold JC, Storm C, Bercker S, Pschowski R, Oppert M, Krüger A, et al. Inferior vena cava diameter correlates with invasive hemodynamic measures in mechanically ventilated intensive care unit patients with sepsis. J Emerg Med 2010;38(5):632–637. DOI: 10.1016/j.jemermed.2007.11.027.
  82. Frassi F, Gargani L, Gligorova S, Ciampi Q, Mottola G, Picano E. Clinical and echocardiographic determinants of ultrasound lung comets. Eur J Echocardiogr 2007;8(6):474–479. DOI: 10.1016/j.euje.2006.09.004.
  83. Updaw R, Passmore L, Mitten-Long D, Pierce C, Ross A, Wells G, et al. Fluid resuscitation volume for septic shock patients was not decreased for echocardiogram-determined left ventricular (LV) systolic dysfunction patients when managed with early goal-directed therapy (EGDT). Chest 2007;132(4). DOI: 10.1378/chest.132.4_meetingabstracts.
  84. Mercat A, Diehl JL, Meyer G, Teboul JL, Sors H. Hemodynamic effects of fluid loading in acute massive pulmonary embolism. Crit Care Med 1999;27(3):540–544. DOI: 10.1097/00003246-199903000-00032.
  85. Srivastava PM, Burrell LM, Calafiore P. Lateral vs medial mitral annular tissue Doppler in the echocardiographic assessment of diastolic function and filling pressures: which should we use? Eur J Echocardiogr 2005;6(2):97–106. DOI: 10.1016/j.euje.2004.07.005.
  86. Takayama Y, Iwasaka T, Sugiura T, Sumimoto T, Takeuchi M, Tsuji H, et al. Increased extravascular lung water in patients with low pulmonary artery occlusion pressure after acute myocardial infarction. Crit Care Med 1991;19(1):21–25. DOI: 10.1097/00003246-199101000-00009.
  87. Staub NC. Pulmonary edema: Physiologic approaches to management. Chest 1978;74(5):559–564. DOI: 10.1378/chest.74.5.559.
  88. Kouz K, Bergholz A, Timmermann LM, et al. The relation between mean arterial pressure and cardiac index in major abdominal surgery patients: A prospective observational cohort study. Anesth Analg 2022;134(2):322–329. DOI: 10.1213/ANE.0000000000005805.
  89. Garan AR, Kanwar M, Thayer KL, Whitehead E, Zweck E, Hernandez-Montfort J, et al. Complete hemodynamic profiling with pulmonary artery catheters in cardiogenic shock is associated with lower in-hospital mortality. JACC Heart Fail 2020;8(11):903–913. DOI: 10.1016/j.jchf.2020.08.012.
  90. Osman M, Syed M, Patel B, Munir MB, Kheiri B, Caccamo M, et al. Invasive hemodynamic monitoring in cardiogenic shock is associated with lower in-hospital mortality. J Am Heart Assoc 2021;10(18):e021808. DOI: 10.1161/JAHA.121.021808.
  91. Pan P, Su LX, Zhou X, Long Y, Liu DW, Wang XT. Critical hemodynamic therapy oriented resuscitation helping reduce lung water production and improve survival. Chin Med J (Engl) 2019;132(10):1139–1146. DOI:10.1097/CM9.0000000000000205.
  92. Ince C, Boerma EC, Cecconi M, Backer DD, Shapiro NI, Duranteau J, et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: Results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med 2018;44(3):281–299. DOI: 10.1007/s00134-018-5070-7.
  93. De Backer D, Bakker J, Cecconi M, Hajjar L, Liu DW, Lobo S, et al. Alternatives to the Swan-Ganz catheter. Intensive Care Med 2018;44(6):730–741. DOI: 10.1007/s00134-018-5187-8.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.