Indian Journal of Critical Care Medicine

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Archive
Related articles

VOLUME 28 , ISSUE 2 ( February, 2024 ) > List of Articles

Original Article

Changes in Driving Pressure vs Oxygenation as Predictor of Mortality in Moderate to Severe Acute Respiratory Distress Syndrome Patients Receiving Prone Position Ventilation

Pratibha Todur, Anitha Nileshwar, Souvik Chaudhuri, Vishal Shanbhag, Celine Cherisma

Keywords : Acute respiratory distress syndrome, Driving pressure, Mortality, Prone position ventilation

Citation Information : Todur P, Nileshwar A, Chaudhuri S, Shanbhag V, Cherisma C. Changes in Driving Pressure vs Oxygenation as Predictor of Mortality in Moderate to Severe Acute Respiratory Distress Syndrome Patients Receiving Prone Position Ventilation. Indian J Crit Care Med 2024; 28 (2):134-140.

DOI: 10.5005/jp-journals-10071-24643

License: CC BY-NC 4.0

Published Online: 30-01-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Background: Prone position ventilation (PPV) causes improvement in oxygenation, nevertheless, mortality in severe acute respiratory distress syndrome (ARDS) remains high. The changes in the driving pressure (DP) and its role in predicting mortality in moderate to severe ARDS patients receiving PPV is unexplored. Methods: A prospective observational study, conducted between September 2020 and February 2023 on moderate-severe ARDS patients requiring PPV. The values of DP and oxygenation (ratio of partial pressure of arterial oxygen to fraction of inspired oxygen [PaO2/FiO2]) before, during, and after PPV were recorded. The aim was to compare the DP and oxygenation before, during and after PPV sessions among moderate- severe ARDS patients, and determine the best predictor of mortality. Results: Total of 52 patients were included; 28-day mortality was 57%. Among the survivors, DP prior to PPV as compared to post-PPV session reduced significantly, from 16.36 ± 2.57 cmH2O to 13.91 ± 1.74 cmH2O (p-value < 0.001), whereas DP did not reduce in the non-survivors (19.43 ± 3.16 to 19.70 ± 3.15 cmH2O (p-value = 0.318)]. Significant improvement in PaO2/FiO2 before PPV to post-PPV among both the survivors [92.75 [67.5–117.75]) to [205.50 (116.25–244.50)], (p-value < 0.001) and also among the non-survivors [87.90 (67.75–100.75)] to [112 (88.00–146.50)], (p-value < 0.001) was noted. Logistic regression analysis showed DP after PPV session as best predictor of mortality (p-value = 0.044) and its AUROC to predict mortality was 0.939, cut-off ≥16 cmH2O, 90% sensitivity, 82% specificity. The Kaplan–Meier curve of DP after PPV ≥16 cmH2O and <16 cmH2O was significant (Log-rank Mantel-Cox p-value < 0.001). Conclusion: Prone position ventilation-induced decrease in DP is prognostic marker of survival than the increase in PaO2/FiO2. There is a primacy of DP, rather than oxygenation, in predicting mortality in moderate-severe ARDS. Post-PPV session DP ≥16 cmH2O was an independent predictor of mortality.


HTML PDF Share
  1. Henderson WR, Griesdale DE, Dominelli P, Ronco JJ. Does prone positioning improve oxygenation and reduce mortality in patients with acute respiratory distress syndrome? Can Respir J 2014;21(4): 213–215. DOI: 10.1155/2014/472136.
  2. Gattinoni L, Tognoni G, Pesenti AP, Taccone P, Mascheroni D, Labarta V, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001;345(8):568–573. DOI: 10.1056/NEJMoa010043.
  3. Taccone P, Pesenti A, Latini R, Federico P, Federica V, Mietto C, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: A randomized controlled trial. JAMA 2009;302(18):1977–1984. DOI: 10.1001/jama.2009.1614.
  4. Mancebo J, Fernández R, Blanch L, Rialp G, Gordo F, Ferrer M, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 2006;173(11):1233–1239. DOI: 10.1164/rccm.200503-353OC.
  5. Chan MC, Hsu JY, Liu HH, Lee YL, Pong SC, Chang LY, et al. Effects of prone position on inflammatory markers in patients with ARDS due to community-acquired pneumonia. J Formos Med Assoc 2007;106(9):708–716. DOI: 10.1016/S0929-6646(08)60032-7.
  6. Fernandez R, Trenchs X, Klamburg J, Castedo J, Serrano JM, Besso G, et al. Prone positioning in acute respiratory distress syndrome: A multicenter randomized clinical trial. Intensive Care Med 2008;34(8):1487–1491. DOI: 10.1007/s00134-008-1119-3.
  7. Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: A randomized controlled trial. JAMA 2004;292(19):2379–2387. DOI: 10.1001/jama.292.19.2379.
  8. Amato MBP, Meade MO, Slutsky AS, Brochard L, Costa ELV, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015;372(8):747–755. DOI: 10.1056/NEJMsa1410639.
  9. Das A, Camporota L, Hardman JG, Bates DG. What links ventilator driving pressure with survival in the acute respiratory distress syndrome? A computational study. Respir Res 2019;11;20(1):29. DOI: 10.1186/s12931-019-0990-5.
  10. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: The Berlin definition. JAMA 2012;307(23):2526–2533. DOI: 10.1001/jama.2012.5669.
  11. Mercat A, Richard JCM, Vielle B, Jaber S, Osman D, Diehl JL, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: A randomized controlled trial. JAMA 2008;299(6):646–655. DOI: 10.1001/jama.299.6.646.
  12. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013;369(22):2126–2136.
  13. Guérin C, Albert RK, Beitler J, Gattinoni L, Jaber S, Marini JJ, et al. Prone position in ARDS patients: Why, when, how and for whom. Intensive Care Med 2020;46(12):2385–2396. DOI: 10.1007/s00134-020-06306-w.
  14. Dam TA, Roggeveen LF, van Diggelen F, Fleuren LM, Jagesar AR, Otten M, et al. Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning. Ann Intensive Care 2022;12(1):99. DOI: 10.1186/s13613-022- 01070-0.
  15. Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013;6;368(23):2159–2168. DOI: 10.1056/NEJMoa1214103.
  16. Wilson JG, Calfee CS. ARDS subphenotypes: Understanding a heterogeneous syndrome. Crit Care 2020;24(1):102. DOI: 10.1186/s13054-020-2778-x.
  17. Palanidurai S, Phua J, Chan YH, Mukhopadhyay A. P/FP ratio: Incorporation of PEEP into the PaO2/FiO2 ratio for prognostication and classification of acute respiratory distress syndrome. Ann Intensive Care 2021;11(1):124. DOI: 10.1186/s13613-021-00908-3.
  18. Bugedo G, Retamal J, Bruhn A. Driving pressure: A marker of severity, a safety limit, or a goal for mechanical ventilation? Crit Care 2017;21(1):199. DOI: 10.1186/s13054-017-1779-x.
  19. Hadaya J, Benharash P. Prone positioning for acute respiratory distress syndrome (ARDS). JAMA 2020;324(13):1361. DOI: 10.1001/jama.2020.14901.
  20. Fanelli V, Ranieri MV, Mancebo J, Moerer O, Quintel M, Morley S, et al. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress syndrome. Crit Care 2016;20:36. DOI: 10.1186/s13054-016-1211-y.
  21. Mekontso Dessap A, Boissier F, Charron C, Emmanuelle Bégot, Xavier Repessé, Annick Legras, et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: Prevalence, predictors, and clinical impact. Intensive Care Med 2016;42(5): 862–870. DOI: 10.1007/s00134-015-4141-2.
  22. Goligher EC, Ferguson ND, Brochard LJ. Clinical challenges in mechanical ventilation. Lancet 2016;387(10030):1856–1866. DOI: 10.1016/S0140-6736(16)30176-3.
  23. Xu Y, Zhang Y, Zhang J, Liang W, Wang Y, Zeng Z, et al. High driving pressure ventilation induces pulmonary hypertension in a rabbit model of acute lung injury. J Intensive Care 2023;11(1):42. DOI: 10.1186/s40560-023-00689-w.
  24. Yehya N, Hodgson CL, Amato MBP, Richard JC, Brochard LJ, Mercat A, et al. Response to ventilator adjustments for predicting acute respiratory distress syndrome mortality: Driving pressure versus oxygenation. Ann Am Thorac Soc 2021;18(5):857–864. DOI: 10.1513/AnnalsATS.202007-862OC.
  25. Hoppe K, Khan E, Meybohm P, Riese T. Mechanical power of ventilation and driving pressure: Two undervalued parameters for pre extracorporeal membrane oxygenation ventilation and during daily management? Crit Care 2023;27(1):111. DOI: 10.1186/s13054-023-04375-z.
  26. Urner M, Jüni P, Hansen B, Wettstein MS, Ferguson ND, Fan E. Time-varying intensity of mechanical ventilation and mortality in patients with acute respiratory failure: A registry-based, prospective cohort study. Lancet Respir Med 2020;8(9):905–913. DOI: 10.1016/S2213-2600(20)30325-8.
  27. Binda F, Galazzi A, Marelli F, Gambazza S, Villa L, Vinci E, et al. Complications of prone positioning in patients with COVID-19: A cross-sectional study. Intensive Crit Care Nurs 2021;67:103088. DOI: 10.1016/j.iccn.2021.103088.
  28. Liu C, Chen Y, Chen Y, Chen B, Xie G, Chen Y. Effects of prone positioning during extracorporeal membrane oxygenation for refractory respiratory failure: A systematic review. SN Compr Clin Med 2021;3(10):2109–2115. DOI: 10.1007/s42399-021-01008-w.
  29. Rilinger J, Zotzmann V, Bemtgen X, Schumacher C, Biever PM, Duerschmied D, et al. Prone positioning in severe ARDS requiring extracorporeal membrane oxygenation. Crit Care 2020;24(1):397. DOI: 10.1186/s13054-020-03110-2
  30. Abrams D, Schmidt M, Pham T, Beitler JR, Fan E, Goligher EC, et al. Mechanical ventilation for acute respiratory distress syndrome during extracorporeal life support. Res Prac Am J Respir Crit Care Med 2020;201(5):514–525.
  31. Munshi L, Del Sorbo L, Adhikari NKJ, Hodgson CL, Wunsch H, Meade MO, et al. Prone position for acute respiratory distress syndrome. A systematic review and meta-analysis. Ann Am Thorac Soc 2017;14(Supplement_4):S280–S288. DOI: 10.1513/AnnalsATS.201704-343OT.
  32. Van Meenen DM, Roozeman JP, Neto AS, Pelosi P, De Abreu MG, Horn J, et al. Associations between changes in oxygenation, dead space and driving pressure induced by the first prone position session and mortality in patients with acute respiratory distress syndrome. J Thorac Dis 2019;11(12):5004–5013. DOI: 10.21037/jtd.2019.12.38.
  33. Koulouras V, Papathanakos G, Papathanasiou A, Nakos G. Efficacy of prone position in acute respiratory distress syndrome patients: A pathophysiology-based review. World J Crit Care Med 2016;5(2): 121–136. DOI: 10.5492/wjccm.v5.i2.121.
  34. Nitsure M, Sarangi B, Shankar GH, Reddy VS, Walimbe A, Sharma V, et al. Mechanisms of hypoxia in COVID-19 patients: A pathophysiologic reflection. Indian J Crit Care Med 2020;24(10):967–970. DOI: 10.5005/jp-journals-10071-23547.
  35. Saigal S, Joshi A, Panda R, Abhishek Goyal, Kodamanchili S, Anand A, et al. Changing critical care patterns and associated outcomes in mechanically ventilated severe COVID-19 patients in different time periods: An explanatory study from central India. Indian J Crit Care Med 2022;26(9):1022–1030. DOI: 10.5005/jp-journals-10071-24279.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.