To heparinize or not to heparinize: Effect on arterial blood gas measurements

Valentine Lobo

The most useful of investigations should be rapid and easy to perform, give reliable results and influence management decisions. The arterial blood gas goes a long way toward fulfilling the above needs. The utility of the arterial blood gas has been enhanced by the additional information provided by modern analyzers, including the plasma electrolytes, anion gap, ionized calcium and plasma lactate.[1] Its continuing reliability is dependent upon recognition of changes in the normal values with changes in the methods and technology employed for measurement. Samples not analyzed at the point of care require anticoagulation albeit in very small quantities, viz heparin 1 U/ml. The ideal anticoagulant would be dry, free of interference in laboratory tests, inexpensive and completely reliable as an anticoagulant.[2] The International Federation of Clinical Chemistry recommend for blood gas sampling, filling up of the dead space of the syringe with heparin, to lubricate the inner wall of the syringe, to expel the excess anticoagulant and to collect at least 20 times the dead space volume of blood.[3]

In actual fact preanalytical sample handling is estimated to account for 75% of the errors in blood gas analysis.[4] In the study by Chhapola et al.[5] in this issue of the Journal examines an important aspect of arterial blood gas measurement, namely the influence on the various parameters of the type of heparin, dry balanced vs. liquid in the preparation of the sample. Dry balanced heparin is “electrolyte balanced,” (containing Lithium and Zinc rather than sodium or calcium) to prevent interference with the numerous electrolytes and other parameters estimated.[4] Heparin has two different effects on blood gas samples based on its intrinsic chemical properties and a dilution of the sample. As heparin dilutes mainly the plasma phase of the blood sample the magnitude of the dilution of a 1 ml blood sample by 0.05 ml of liquid heparin may be around 10%.[4] The authors have painstakingly prepared liquid heparin syringes with meticulous attention to detail regarding the pH, Na+ and pO2 content of the heparin available in an attempt to standardize the technique. Further strengths of the study include a single needle prick for sampling with both syringes that minimized sampling differences. duplicate analysis of each sample giving a coefficient of variation of 1%, point of care analysis and achieving a sample size larger than calculated for pCO2. The authors however as stated did not measure ionized calcium a parameter previously shown to be influenced by various preparations of heparin.[2]

What did This Study Show?

Although there was a significant difference between pH measured in samples collected in the two syringes, no value was beyond the total allowable error.[3] Furthermore the actual means 7.42 and 7.41 are so close that the difference is unlikely to affect clinical decisions. By contrast, though the difference between mean pCO2 values was not significant, 40% of the values were outside the total allowable error limits. Similar wide variability in the measurement of Na+, K+, Cl− and HCO3− were
Announcement

What are The Implications of This Study?

The use of dry balanced heparin syringes in India is probably still limited. Cost will remain a significant factor in the choice between the two types of syringes, but should not compromise the accuracy of measurement, calculation and clinical decisions. In addition erroneous results will translate into inappropriate interventions and avoidable costs.[4] Although the pH may influence the decision to intervene, the nature of the intervention would require the complete panel, which differed widely between the two types of samples in this study. As it was not possible for the present study to determine a difference in clinical decision making, more studies are required. As the authors themselves have noted, variations in the measurement by different analyzers and measurement of calcium will need to be determined by multicentric studies. In addition, it may be necessary to see how far the variations will affect clinical decision making. The present study is important as it provides an insight to the extent to which dilution by heparin may alter the values of pCO2, HCO3−, Na+, K+ and Cl−. Further studies should concentrate on the determination of the anion gap, corrected anion gap where possible the diagnoses obtained and interventions arising from these calculations. In conclusion, heparin whose requiem in therapeutics appeared to have been sounded by the advent of low molecular weight analogs has returned to haunt clinical medicine this time in the guise of an anticoagulant for laboratory measurement.

References

4. Aney J. Preventing preanalytical error in blood gas analysis (The blood gas laboratory) J Respir Care Sleep Med Spring 2012;30:64.

How to cite this article: Lobo V. To heparinize or not to heparinize: Effect on arterial blood gas measurements. Indian J Crit Care Med 2014;18:1-2.

Source of Support: Nil, Conflict of Interest: None declared.

“QUICK RESPONSE CODE” LINK FOR FULL TEXT ARTICLES

The journal issue has a unique new feature for reaching to the journal’s website without typing a single letter. Each article on its first page has a “Quick Response Code”. Using any mobile or other hand-held device with camera and GPRS/other internet source, one can reach to the full text of that particular article on the journal’s website. Start a QR-code reading software (see list of free applications from http://tinyurl.com/yzh2tc) and point the camera to the QR-code printed in the journal. It will automatically take you to the HTML full text of that article. One can also use a desktop or laptop with webcam for similar functionality. See http://tinyurl.com/2bw7fn3 or http://tinyurl.com/3ysr3me for the free applications.