Nonetheless, the post procedural chest radiographic findings of subclavian artery cannulation are important to understand. The usefulness of the post procedural chest radiograph is increased by the fact that even with the electrocardiogram monitoring of the tip, using either electrolyte solution or wire stylet, all catheters—arterial and venous—could reveal an increase in size of the P wave as well as the QRS complex, once the catheter tip extends beyond the pericardial reflection.

Amit Jain
Department of Anaesthesia & Intensive Care, Alchemist Hospitals Ltd., Panchkula, Haryana, India

Correspondence: Dr. Amit Jain, Department of Anaesthesia & Intensive Care, Alchemist Hospitals Ltd., Panchkula, India
E-mail: amitvasujain@gmail.com

References

Author’s reply
Dear Editor,

Appreciating the author’s interest[1] in the case report,[2] we feel that their recommendation of observing the pulsatile column of fluid in the infusion set is quite subjective when the blood pressure is low and fluid is not freely flowing, compared to a chest radiograph. Also, the tip of the catheter might be abutting the wall when the column does not pulsate.

Comparison of arterial blood gases obtained from the catheter to that from the peripheral artery might be feasible when access to the site is easy. In a

Critically ill patients with 2009 H1N1 infection in an Indian intensive care unit

Dear Editor,

We read with great interest the report by Chacko et al.[1] The authors reported an interesting experience on 2009 H1N1 infection. World Health Organization’s (WHO) "new" Influenza A (H1N1) Case Summary Form for case-based data collection is to be used to obtain important information to determine severity and clinical characteristics of the cases infected with "new" Influenza A (H1N1).[2] According to Centers for Disease Control and Prevention (CDC), the use of a standardized data collection instrument will aid in uniform data collection of geographically dispersed cases and for clinical comparison to assess changes in viral pathogenesis and clinical course over time.[3]

We believe that with some additions, according to WHO and CDC case summary form, as mentioned below, scientific value and contribution of the article...
may increase in prospective study.\[1-3\]

The details to be included are as follows. Vaccination history with seasonal influenza, H1N1 or pneumococcal vaccine? History of use of Oseltamivir as prophylaxis or treatment before admission? Oseltamivir timing of initiation, dosing, duration, adverse effects and dose modification in acute kidney injury (AKI). History of epidemiologic risk factors could have been included. Antiviral treatment is most likely to provide benefit when initiated within the first 48 hours of illness. CDC and WHO note that some experts have advocated increased (doubled) doses of Oseltamivir and that hospitalized patients with severe infections might require longer treatment courses (e.g., 10 days). Since Oseltamivir is primarily excreted by kidneys, dosing must be modified for renal insufficiency.\[4\]

The pandemic of H1N1 influenza A infection appears to involve sustained human to human transmission. Therefore, what infection control measures were implemented for 2009 H1N1 influenza in healthcare settings, including protection of healthcare personnel, family member and close contact, and in hemodialysis settings including Oseltamivir prophylaxis. What was the secondary attack rate or bacterial super-infection rate?

Possible etiology of AKI is multifactorial, resulting from acute tubular necrosis due to shock, hypoxemia of acute lung injury, hypoperfusion, renal vasoconstriction, and rhabdomyolysis.\[5\]

Multicenter, prospective, randomized, controlled clinical trials should be carried out to identify the effectiveness of early Oseltamivir treatment, protection offered by having undergone seasonal influenza and H1N1 vaccination and to identify potential poor prognostic indicators in the future.

Pooling of data, according to uniform and a standardized WHO, CDC case summary form, from various centers across the world, would certainly help a better understanding of similar outbreaks and help administrators plan for such disasters in the future.

Vivek B. Kute, Pankaj R. Shah, Manoj R. Gumber, Aruna V. Vanikar, Hargovind L. Trivedi

Departments of Nephrology and Transplantation Medicine, and Pathology, Laboratory Medicine and Transfusion Services and Immunohematology, IKDRC-ITS, Ahmedabad, India

Correspondence:
Dr. Vivek B. Kute, Department of Nephrology and Clinical Transplantation, Dr H. L. Trivedi Institute of Transplantation Sciences (ITS)–Smt. Gulabben

References