CASE SERIES

Systemic Oxygen Utilization in Severe COVID-19 Respiratory Failure: A Case Series

Rajeev K Garg¹[®], Tara Kimbrough²[®], Wajahat Lodhi³, Ivan DaSilva⁴[®]

HIGHLIGHTS

- There are limited data on pulse oximetry oxygen saturation (SpO₂) targets in patients with COVID-19 respiratory failure
- · Hyperoxia is common in critically ill patients and associated with worse outcomes
- Markers of systemic oxygen (O₂) utilization suggest that hyperoxia occurs in this disease
- Adjusting SpO₂ targets to systemic O₂ utilization may limit hyperoxia
- · Limiting hyperoxia in COVID-19 respiratory failure may improve outcomes

Abstract

Background: Management of hypoxemia in patients with severe COVID-19 respiratory failure is based on the guideline recommendations for specific SpO_2 targets. However, limited data exist on systemic O_2 utilization. The objective of this study was to examine systemic O_2 utilization in a case series of patients with this disease.

Patients and methods: Between March 24, and April 9, 2020, 8 patients intubated for severe COVID-19 respiratory failure had near-simultaneous drawing of arterial blood gas (ABG), central venous blood gas (cVBG), and central venous oxygen saturation ($ScvO_2$) at a mean of 6.1 days into hospitalization. Three patients were managed with indirect cardiac output (CO) monitoring by FloTrac sensor and Vigileo monitor (Edwards Lifesciences, Irvine, CA). The oxygen extraction index (OEI; SaO_2 - $ScvO_2/SaO_2$) and oxygen extraction fraction (OEF; CaO_2 - $CvO_2/CaO_2 \times 100$) were calculated. Values for hyperoxia ($ScvO_2 \ge 90\%$), normoxia ($ScvO_2 71-89\%$), and hypoxia ($ScvO_2 \le 70\%$) were based on the literature. Mean values were calculated.

Results: The mean partial pressure of oxygen (PaO_2) was 102 with a mean fraction of inspired O_2 (FiO_2) of 44%. One patient was hyperoxic with a reduced OEI (17%). Five patients were normoxic, but 2 had a reduced OEF (mean 15.9%). Two patients were hypoxic but had increased systemic O_2 utilization based on OEF or OEI.

Conclusion: In select patients with severe COVID-19 respiratory failure, O_2 delivery (DO_2) was found to exceed O_2 utilization. Sp O_2 targets based on systemic O_2 utilization may help in reducing oxygen toxicity, especially in the absence of anaerobic metabolism. Further data are needed on the prevalence of systemic O_2 utilization in COVID-19.

Keywords: Acute respiratory distress syndrome, COVID-19, Hyperoxia, Hypoxia. Indian Journal of Critical Care Medicine (2021): 10.5005/jp-journals-10071-23722

INTRODUCTION

Progressive hypoxemia remains a prominent feature in patients infected with COVID-19. In severe COVID-19 acute respiratory distress syndrome (ARDS), there are limited data on optimal SpO₂ targets.¹ Liberal use of O₂ therapy has been associated with increased mortality.² In contrast, reduced O₂ delivery (DO₂) may lead to anaerobic metabolism and cell death. Since a major focus in the management of COVID-19 ARDS patients is the treatment of hypoxemia, optimal SpO₂ targets may be best titrated towards systemic O₂ utilization. However, there are minimal data on systemic O₂ utilization in patients with severe COVID-19 respiratory failure.

Central venous O₂ saturation (ScvO₂) has been used as a surrogate marker for O₂ consumption (VO₂).³ ScvO₂ measurements of hyperoxia (ScvO₂ \ge 90%) and hypoxia (ScvO₂ \le 70%) have both been associated with increased mortality in patients with sepsis suggesting the importance of optimal O₂ balance.⁴ In addition, derivation of the oxygen extraction index (OEI; SaO₂-ScvO₂/SaO₂) and oxygen extraction fraction (OEF; CaO₂-CvO₂/CaO₂ \times 100) can provide additional data on systemic O₂ utilization. Along with markers of anaerobic metabolism, ScvO₂, OEI, and OEF can

^{1,2,4}Section of Critical Care Neurology, Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States

³Department of Internal Medicine, University Parma Medical Center, Cleveland, Ohio, USA

Corresponding Author: Rajeev K Garg, Section of Critical Care Neurology, Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States, Phone: +1 (312)942-4500, e-mail: rajeev_k_garg@rush.edu

How to cite this article: Garg RK, Kimbrough T, Lodhi W, DaSilva I. Systemic Oxygen Utilization in Severe COVID-19 Respiratory Failure: A Case Series. Indian J Crit Care Med 2021;25(2):215–218.

Source of support: Nil

Conflict of interest: None

provide a more complete picture of O_2 metabolism in critically ill patients. In this study, we examine systemic O_2 utilization in a case series of patients with severe COVID-19 respiratory failure.

[©] Jaypee Brothers Medical Publishers. 2021 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

MATERIAL AND METHODS

This study was approved by the Rush University Medical Center (RUMC) institutional review board and ethics standards committee to perform this case series. Between March 24, and April 9, 2020, 8 patients with COVID-19 were managed in the intensive care unit (ICU) at RUMC. Sociodemographic, relevant past medical history, hemoglobin level, and ejection fraction (EF; %) on 2D echocardiography were collected for each patient. Patients were managed according to a set institutional protocol based on the guideline recommendations at that time.¹ Target SpO₂ was maintained at 92–96%. Mean arterial pressure was maintained greater than 65 mm Hg with norepinephrine as the first-line agent. Sedation was titrated to maintain adequate patient-ventilator synchrony with daily sedation holidays when possible. Neuromuscular blockade with cisatracurium was initiated in select patients who remained asynchronous with the ventilator despite adequate sedation. The amount of vasopressors and sedation was abstracted from each patient's flow sheet at the time of blood gas measurements. The presence or absence of continuous neuromuscular blockade was also recorded.

During these patients' hospitalization, ABGs were obtained for lactic acid, PaO₂, partial pressure CO₂ (PaCO₂), and SaO₂. Nearsimultaneous cVBG was obtained to assess central venous partial pressure O₂ (PcvO₂), central venous partial pressure CO₂ (PcvCO₂), and ScvO₂. Per the clinician's discretion, 3 patients were placed on the FloTrac sensor and Vigileo monitor (Edwards Lifesciences, Irvine, CA) for indirect CO monitoring. This was the maximum device available in our ICU. CO data were used in the derivation of the OEF according to Fick equation. The distance from the tip of the internal jugular central venous line to the cavoatrial junction was measured based on the chest X-ray performed on the day closest to the blood gas drawings. All patients had their central venous catheter placed at or below 15 cm suggesting close approximation (~1%) between the ScvO_2 and mixed venous O_2 (SvO_2). 5 However, since pulmonary artery catheters were not utilized, SvO₂ was calculated to be 5% less than ScvO₂ based on the current guideline recommendations for septic shock.⁶ ScvO₂ levels were categorized according to the outcome data as follows: hypoxia (≤70%), normoxia (71–89%), and hyperoxia (\geq 90%). The derived SvO₂ was used in the calculation of the OEI and OEF. Markers of anaerobic metabolism were assessed in each patient by examining arterial lactate levels and venoarterial carbon dioxide (CO₂) difference (PcvCO₂-PaCO₂).⁷ Mean levels were calculated for each variable.

Results

216

Table 1 highlights the sociodemographic data and clinical data collected based on the patient's hospital day. The average age of the cohort was 55.3 years, 63% were men, and 50% were Hispanic. A majority of patients had a premorbid diagnosis of hypertension (75%) and diabetes (87.5%). All patients met the criteria for severe ARDS ($PaO_2/FiO_2 < 100$) on presentation and were intubated for hypoxemic respiratory failure. Mean hemoglobin was 10.6 mg/dL for the cohort. All patients had a normal EF on presentation. None of the patients were on more than one vasopressor for blood pressure maintenance. One patient (#5) was receiving continuous neuromuscular blockade with cisatracurium whereas the remainder were on sedative regimens (Table 1) for patient–ventilator synchrony. The distance of the tip of the central lines from the cavoatrial junction is outlined in Table 1. None of the patients were

Table 1: Sociodemographic and clinical data of cohort	nd clinical data of c	ohort						
Patient #	#1	#2	#3	#4	#5	#6	#7	#8
Days of MV	8	6	1	14	2	4	8	4
Gender	W	W	Μ	Σ	W	ц	W	Н
Race	White	Hispanic	Hispanic	Hispanic	Black	Black	Hispanic	Black
Age (years)	34	56	64	57	60	58	48	65
DM	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
HTN	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Hemoglobin (g/dL)	13.9	11.5	13.4	7.1	7.1	11.3	8.4	11.8
EF (%)	65	N/A	55	65-70	60–65	60–65	70–75	65-70
CO (L/min)	4.0	N/A	6.5	N/A	N/A	N/A	N/A	4.5
CV distance (cm)	–3.7 cm	–3.8 cm	–5.1 cm	0 cm	3.5 cm	–2.8 cm	–5.2 cm	–1.2 cm
Paralytics	No	No	No	No	Yes	No	No	No
Sedation	4 mg/hr HME	5 mg/hr ME 4 mg/hr MDZ	175 μg/hr FEN 50 μg/kg/hr PRF	0.6 µg/kg/hr DEX	250 μg/hr FEN 5 mg/hr MDZ	4 mg/hr HME 6 mg/hr MDZ	4 mg/hr HME 4 mg/hr MDZ	3 mg/hr HME 15 μg/kg/hr PRF
Norepinephrine (µg/min)	None	2	22.5	2	10	5	None	3
Abbreviations: N/A, not available; MV, mechanical ventilation; EF, ejection fraction; CO, cardiac output; CV distance, distance of central venous catheter from cavoatrial junction; DM, diabetes mellitus; HTN, hypertension; HME, hydroxymorphone; ME, morphine; MDZ, midazolam; FEN, fentany!; PRF, propofol; DEX, dexamedetomidine	e; MV, mechanical v cymorphone; ME, m	'entilation; EF, ejecti orphine; MDZ, mida	ion fraction; CO, cardia azolam; FEN, fentanyl; P	c output; CV distance, di RF, propofol; DEX, dexam	stance of central ven edetomidine	ous catheter from c	cavoatrial junction;	DM, diabetes mellitus;

Table 2: Arterial and central venous blood gas data

Patient #	#1	#2	#3	#4	#5	#6	#7	#8	Mean
рН	7.44	7.42	7.34	7.45	7.44	7.35	7.39	7.41	7.41
HCO_3^{-} (mmol/L)	21	25	20	26	25	25	25	17	23
FiO ₂ (%)	60	40	40	40	70	40	40	40	46
SpO ₂ (%)	93	95	97	99	94	93	98	96	96
PaO_{2} (mm Hg)	94	98	104	98	62	141	123	94	102
PaCO ₂ (mm Hg)	35	42	37	38	38	46	42	35	39
SaO ₂ (%)	96.6	96.1	97.2	96.3	89.4	98.4	98.5	95.7	96.0
PcvO ₂ (mm Hg)	41	46	55	48	43	108	40	50	53.9
PcvCO ₂ (mm Hg)	41	47	40	46	42	46	48	38	43.5

Abbreviations: HCO₃⁻, serum bicarbonate; FiO₂, fraction of inspired O₂; SpO₂, pulse oximetry; PaO₂, partial pressure of oxygen; PaCO₂, partial pressure of CO₂; SaO₂, oxygen saturation; PcvO₂, partial pressure of central venous O₂; PcvCO₂, partial pressure of central venous CO₂

Table 3: Markers of oxygen utilization and anaerobic metabolism

Patient #	#1	#2	#3	#4	#5	#6	#7	#8	Mean
Systemic O ₂ utilization									
$ScvO_2(\sqrt{n})$	69.5	75.3	83.2	72.6	71.3	94.2	68.2	80.2	76.8
Estimated SvO ₂ (%)	64.5	70.3	78.2	67.6	66.3	63.2	63.2	75.2	71.8
OEI	33.2	26.8	19.5	29.8	25.8	9.3	35.8	21.4	22.5
OEF	28.5	N/A	14.8	N/A	N/A	N/A	N/A	17	20.1
Anaerobic metabolism									
Arterial lactate (mmol/dL)	1.9	1.0	1.4	1.1	0.8	1.4	1.1	NR	1.2
Delta PCO ₂	6	5	3	4	4	0	0	NR	1.1

Abbreviations and reference ranges: OEI, oxygen extraction index (ref: 20–25%); OEF, oxygen extraction fraction (ref: 22–30%); Arterial lactate (ref: >2 mmol/L); Delta PCO₂ (ref: >6 mm Hg)

suspected of being treated for cytokine release syndrome at the time of measurement.

Blood gas data for each patient are presented in Table 2. The mean days of mechanical ventilation before the ABG and cVBG were obtained was 6.1 days. At the time of sampling, the mean FiO₂ was 46%, SpO₂ was 96%, and PaO₂ was 102 mm Hg. The mean pH, pCO₂, and serum bicarbonate were within the reference range. Parameters for systemic O₂ utilization are presented in Table 3. The mean ScvO₂ was 76.8%. One patient (#6) was hyperoxic with a ScvO₂ = 94.2% and OEI below the reference range (9.3%). Two patients (#1 and #7) were hypoxic but had an elevated OEI (33.2 and 35.8%, respectively). Patient #1 also had an OEF at the upper limits of normal. The remaining patients were normoxic, but 2 patients had a reduced OEF (mean 15.9%). Their corresponding OEI were also reduced. None of the patients had evidence of anaerobic metabolism based on the arterial lactate levels or venoarterial CO₂ difference.

DISCUSSION

Our results suggest that systemic O_2 utilization is abnormal in patients with severe COVID-19 respiratory failure when assessed using $ScvO_2$, OEI, and OEF. In one patient who was hyperoxic, the combination of elevated $ScvO_2$ and reduced OEI suggests excessive DO_2 . In two patients who were hypoxic, the absence of anaerobic metabolism and elevated OEI suggests adequate DO_2 . Although theoretically one could target a lower $ScvO_2$ to reduce DO_2 , this may place the patient at risk for a metabolic crisis. However, in 2 normoxic patients, the presence of reduced OEF also suggests a relatively excessive DO_2 , especially given the absence of anaerobic metabolism. These patients may potentially tolerate lower systemic DO₂. These data suggest that select patients with severe COVID-19 respiratory failure are at risk for DO₂ exceeding systemic O₂ utilization. This may place these patients at risk for O₂ toxicity and worse outcomes.

Current guidelines for oxygenation levels ($SpO_2 > 88\%$ or $PaO_2 > 55$) in patients with ARDS do not account for systemic O₂ levels.⁸ In patients with COVID-19 respiratory failure, current guidelines recommend a SpO₂ goal of 92-96%¹ Despite evidence that prolonged hyperoxia has been associated with an acute lung injury, excessive DO₂ remains common in mechanically ventilated patients.⁹⁻¹¹ In a recent meta-analysis, both time and duration of PaO₂ elevation has been associated with increased mortality in critically ill patients regardless of the presenting disease.¹² Therefore, matching DO_2 to O_2 utilization may be a significant factor in improving the outcomes in patients with a primary acute lung injury, such as that seen with COVID-19. Tolerance of lower SpO₂ targets in COVID-19 patients based on systemic O₂ utilization may allow for less-aggressive interventions to maintain SpO₂. Furthermore, in patients with "happy hypoxemia," tolerance of lower SpO₂ goals based on systemic O₂ utilization may be beneficial in reassessing intubation and preventing the secondary complications of mechanical ventilation.¹³

Outside the lungs, there is growing pathologic evidence of multiorgan involvement from severe acute respiratory syndrome coronavirus 2 (SARS-CoV2).¹⁴ While ongoing research suggests that SARS-CoV2 may affect host mitochondrial function, there are limited data on its final influence on cellular metabolism.¹⁵ Impairments in cellular function may lead to reduced VO₂ without necessarily causing anaerobic metabolism, especially in a deeply

sedated patient with reduced O₂ demands. Similar pathophysiology has been described in other models of sepsis with inhibition of the mitochondrial respiratory chain complex.¹⁶ Therefore, by assessing the trends in VO₂ indirectly through ScvO₂, OEF, and OEI, we may be able to limit DO₂ and potentially delay the toxic effects of excessive systemic O₂.

Our results are preliminary with several limitations. Firstly, it involves a small cohort of heterogeneous patients from a single center. However, our data are only hypothesis generating and warrant further examination in a larger cohort of patients. Secondly, derivation of SvO₂ from ScvO₂ remains controversial and may have influenced our derivation of OEI and OEF.¹⁷ ScvO₂ and SvO₂ are useful measurements of tissue oxygen extraction per physiologic principles.¹⁷ While SvO₂ is considered more accurate than ScvO₂ given its anatomic location, the simplicity of measuring ScvO₂ from a properly placed central line provides the greatest advantage in critically ill patients. Finally, we do not have longitudinal data on systemic O₂ utilization to assess whether our results are consistent over time. The inability to perform repeated interval or continuous ScvO₂ monitoring would have been ideal in strengthening our results.

CONCLUSION

While only hypothesis generating, our preliminary data suggest that hyperoxia occurs in a subset of patients with severe COVID-19 respiratory failure. Given the association of worse outcomes with hyperoxia, ScvO₂, OEF, and OEI may be the useful parameters in optimizing DO₂. Further prospective data are needed on optimal systemic O₂ targets in patients with this deadly disease.

ORCID

Rajeev K Garg () https://orcid.org/0000-0002-1949-8019 Tara Kimbrough 6 https://orcid.org/0000-0002-6870-5598 Ivan DaSilva (b) https://orcid.org/0000-0001-8572-9631

REFERENCES

- 1. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med 2020;46:854-887. DOI: 10.1007/s00134-020-06022-5.
- 2. Chu DK, Kim LH, Young PJ, Zamiri N, Almenawer SA, Jaeschke R, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet 2018;391(10131):1693-1705. DOI: 10.1016/ S0140-6736(18)30479-3.
- Reinhart K, Rudolph T, Bredle DL, Hannemann L, Cain SM. Comparison of central-venous to mixed-venous oxygen saturation during changes in oxygen supply/demand. Chest 1989;95(6):1216–1221. DOI: 10.1378/chest.95.6.1216.

- 4. Pope JV, Jones AE, Gaieski DF, Arnold RC, Trzeciak S, Shapiro NI. Multicenter study of central venous oxygen saturation (ScvO(2)) as a predictor of mortality in patients with sepsis. Ann Emerg Med 2010;55(1):40-46.e1. DOI: 10.1016/j.annemergmed.2009.08.014.
- Kopterides P, Bonovas S, Mavrou I, Kostadima E, Zakynthinos E, Armaganidis A. Venous oxygen saturation and lactate gradient from superior vena cava to pulmonary artery in patients with septic shock. Shock 2009;31(6):562-568. DOI: 10.1097/SHK.0b013e31818bb8d8.
- Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 2017;45(3):486-552. DOI: 10.1097/CCM.00000000002255.
- 7. Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, et al. Combination of venoarterial PCO₂ difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med 2002;28(3):272-277. DOI: 10.1007/ s00134-002-1215-8.
- 8. Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342(18):1301-1308. DOI: 10.1056/ NEJM200005043421801.
- Helmerhorst HJ, Schultz MJ, van der Voort PH, Bosman RJ, Juffermans NP, de Jonge E, et al. Self-reported attitudes versus actual practice of oxygen therapy by ICU physicians and nurses. Ann Intensive Care 2014;4:23. DOI: 10.1186/s13613-014-0023-y.
- 10. Suzuki S, Eastwood GM, Peck L, Glassford NJ, Bellomo R. Current oxygen management in mechanically ventilated patients: a prospective observational cohort study. J Crit Care 2013;28(5): 647-654. DOI: 10.1016/j.jcrc.2013.03.010.
- 11. Kallet RH, Matthay MA. Hyperoxic acute lung injury. Respir Care 2013;58(1):123-141. DOI: 10.4187/respcare.01963.
- 12. Helmerhorst HJ, Roos-Blom MJ, van Westerloo DJ, de Jonge E. Association between arterial hyperoxia and outcome in subsets of critical illness: a systematic review, meta-analysis, and metaregression of cohort studies. Crit Care Med 2015;43(7):1508-1519. DOI: 10.1097/CCM.00000000000998.
- 13. Couzin-Frankel J. The mystery of the pandemic's 'happy hypoxia'. Science 2020;368(6490):455-456. DOI: 10.1126/science.368.6490.455.
- Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, 14. et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol 2020;251(3):228-248. DOI: 10.1002/path.5471.
- 15. Singh KK, Chaubey G, Chen JY, Suravajhala P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am J Physiol Cell Physiol 2020;319(2):C258-C267.DOI: 10.1152/ajpcell.00224.2020.
- 16. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 2002;360(9328):219-223. DOI: 10.1016/S0140-6736(02)09459-X.
- 17. Walley KR. Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med 2011;184(5):514-520. DOI: 10.1164/ rccm.201010-1584Cl.