Intensive care unit management of a posttraumatic pneumonectomy case

Sir,

Tracheobronchial rupture following blunt chest trauma is rare and life-threatening. Surgical repair is done in most cases and pneumonectomy is avoided whenever possible as emergency pneumonectomy carries high mortality rate of 50-70%. This is due to contributory effects of hypotension, hypoxia and abrupt rise in pulmonary vascular resistance leading to right ventricular failure and so postoperative care in intensive care unit (ICU) is very important. We describe ICU management of such a case. An 18-year-old male of chest trauma presented to the emergency referred from another hospital. Vitals were pulse 113/min, blood pressure 152/82 mmHg, respiratory rate (RR) 35/min, saturation 84% with massive subcutaneous emphysema and intercostal chest drain (ICD) in situ. Patient was immediately intubated, and another ICD inserted on the right side. Chest X-ray (CXR) post ICD revealed massive pneumothorax on right side [Figure 1]. Computed tomography chest revealed complete transection of right main bronchus. Patient was shifted to emergency operation theatre and intubated with double lumen tube (DLT). Intraoperatively as bronchial anastomosis was
not possible, right sided pneumonectomy was done, and patient was shifted to the ICU. In the ICU, instead of changing to a single lumen tube, we ventilated the patient with DLT [Figure 2] only for 12 h as there were high chances of bronchial stump rupture. Patient was kept on volume control with a tidal volume 5 ml/kg, positive end expiratory pressure (PEEP) of 5 cm H\textsubscript{2}O, with respiratory rate (RR) adjusted to limit plateau airway pressure to 20 cm H\textsubscript{2}O. PaCO\textsubscript{2} 50-55 mmHg was accepted. Fluid intake was restricted to maintain urine output >0.5 ml/kg/h. Weaning was started after 24 h and patient extubated on the 3rd postoperative day and put on noninvasive ventilation (NIV) intermittently for the next 2 days. CXR was done daily to monitor the fluid in postpneumonectomy space (PPS). With active physiotherapy and mobilization, patient did well and was discharged from ICU on 9th postoperative day [CXR, Figure 3] and from the hospital on 14th day. At the time of discharge, he could climb two flights of stairs without dyspnea.

The common causes of early postoperative death after emergency pneumonectomy are bleeding, postpneumonectomy pulmonary edema, right ventricular failure and arrhythmias,[2] risk factors being increased age, higher injury severity score, right sided pneumonectomy and comorbid condition.[3] The incidence of pulmonary edema is higher for right pneumonectomy but can be avoided with judicious fluid management. We maintained a negative fluid balance of 500 ml/24 h. Radiographic monitoring of PPS is crucial. Immediately after surgery PPS fills with air.[4] Then, fluid accumulates at a rate of two rib spaces per day and 80-90\% is filled in 2 weeks. If fluid accumulates more rapidly, then possibility of hemorrhage, infection or chylothorax should be kept in mind. Arrhythmias are seen in 9-34\% patients, mainly in advanced age group.[3] After pneumonectomy work of breathing increases so patient remains tachypenic. We kept our patient on NIV intermittently and accepted an RR of 25-30/min.

In conclusion, adequate knowledge about changes postpneumonectomy and management of complications are vital for a favorable outcome.

Richa Aggarwal, Deviprasad Dash, Kapil Dev Soni, Biplab Mishra1
Department of Critical Care Medicine and 1Surgery, JPNA Trauma Centre, AIIMS, New Delhi, India

Correspondence:
Dr. Richa Aggarwal,
Departments of Critical Care Medicine, JPNA Trauma Centre, AIIMS, New Delhi - 110 029, India.
E-mail: pathakritica@yahoo.co.in
Symptomatic hypomagnesemia and proton pump inhibitors

Sir,

We read with interest the report by Wang et al. titled "a case of symptomatic hypomagnesaemia in medical intensive care unit that is strongly related to PPIs."[1] In fact, symptomatic hypomagnesemia and PPIs are sporadically mentioned. In the case series by Mackay and Bladon, the problem is common among the elderly with long-term use of PPI, and the stopping of PPI can dramatically improve the problem.[2] Of interest, not all patients receiving PPI develop symptomatic hypomagnesemia. The possible relationship to a serious disease, Zollinger–Ellison syndrome, is mentioned.[3]

Focusing on the present report, the case in intensive care context is reported. The problem of hypomagnesemia is not an extremely rare condition. As noted by Ayuk and Gittoes, "hypomagnesaemia is relatively common, with an estimated prevalence in the general population ranging from 2.5% to 15%[4] and this can be due to many factors, not specific to use of PPI. In addition, according to a report by Deshmukh et al., 70% of patients in critical care unit had hypomagnesemia, despite no history of PPI use.[5] The nutritional problem seems to be an important factor leading to hypomagnesemia.[4,5]

Hence, finding of hypomagnesemia in the patient receiving PPI might not imply that PPI is the cause of the problem. Finally, the routine electrolyte investigation usually does not cover serum magnesium. Hence, the problem might be under- or late-diagnosed. Critical care unit practitioners should regularly monitor the serum magnesium of the patient to detect the problem early.[6]

Sim Sai Tin, Viroj Wiwanitkit

1 Medical Center, Shantou, 1Hainan Medical University, Haikou, China
Correspondence:
Prof. Sim Sai Tin, Medical Center, Shantou, China.
E-mail: simsaitin@gmail.com

References