Transfusion of blood and its components is one of the most common interventions in the ICU. The current literature in transfusion therapy revolves around three main areas:
1. Restrictive vs. liberal transfusion strategy.
2. The storage time of blood and its effects.
3. The use of component therapy and the ratios of components transfused and patient outcomes.

We have grouped the studies in each area, and give our comments about their relevance to the clinicians.

Restrictive Strategy vs Liberal Strategy of Red-cell Transfusion

The TRICC trial is a truly landmark trial, as it defined the restrictive red blood cell transfusion as the new NORMAL in the critically ill. In this trial, in the restrictive strategy group, the in-hospital mortality (22.2% vs. 28.1%, P = 0.05), and mortality in younger (age <55 years, 5.7% vs. 13.0%, P = 0.02), less sick (APACHE II <20, 8.7% vs.16.1% P = 0.03) was significantly lower but not in those with significant cardiac disease. However the CONSORT diagram showed a lot of exclusions, some unusual in nature, drawing some criticism whether the trial could be genuinely applicable to all comers in the ICU (838 included out of 6451 screened). On subgroup analysis, no significant differences in 30-day mortality were seen with restrictive strategy in patients with cardiac disease (20.5% vs 22.9%; P = 0.69), severe infections and septic shock (22.8% vs 29.7%; P = 0.36), or trauma (10.0% vs 8.8%; P = 0.81). It left questions regarding role of restrictive transfusion strategy in patients with significant cardiac disease and septic shock unanswered.

The TRISS trial, another landmark trial in the continuum of restrictive strategy, signaled an end to the old tradition of generous red cell transfusion in patients with septic shock. This trial included patients with septic shock (as per the old definition), except those who also had acute coronary syndrome, ongoing bleeding, limitation of therapy, and others. There were no differences in primary outcome (90-day mortality, 43.0% in the lower-threshold group vs 45.0%; RR, 0.94; 95% CI, 0.78 to 1.09; P = 0.44), and use of life support therapy (secondary outcome) at days 5, 14 and 28 days. The mortality was also similar in older patients i.e. >70 years (9.8%, 95% CI 0.79–1.18) those with chronic cardiovascular disease (1.08, 95% CI; 0.75–1.40), and sicker patients (SAPS > 53, 0.83, 95% CI; 0.64–1.04). The trial had a low risk of bias and the trial design was quite pragmatic. Since there were minimal exclusions, it can be widely and routinely applied in our routine practice. By the authors own admission, due to the wide confidence intervals observed in the primary outcome, a 9% relative increase or a 22% relative decrease the lower-threshold group compared to the higher-threshold group, cannot be ruled out. However, overall, it was a well conducted, practice changing trial. Further information regarding role of restrictive strategy in patients with septic shock may be available soon from the study proposed by Jonsson AB, et al.

The trial by Gobatto ALN, et al., deserves a separate mention, as it goes against the grain of the restrictive strategy in general. However, the hypothesis that reduced oxygen supply to the brain during acute phase of insult (due to restrictive strategy) may compromise the long-term outcomes is tenable. We may adopt this approach in spite of several limitations noted by the authors in the article (small sample size, single center trial, slow recruitment, lack of ICP measurements) till we get conclusive evidence from further research.

There are other trials addressing the question of restrictive transfusion in various subgroups, mainly in the patients with cardiovascular surgery and disease, brain trauma and upper GI bleeding. Except for patients with brain trauma (see above), where liberal transfusion may be better, restrictive strategy appears to be useful (Table 1).

Storage Time of Blood and Outcomes

Red cell storage lesions affect not only the red cells but also red cells collected for transfusion and preserved in solutions. Since S-nitrosothiol-Hb (SNO-Hb) is immediately degraded following blood collection, it compromises the capacity the RBCs to enhance the production of nitric oxide (NO), which reduces the vasodilatory ability of RBCs. Other changes comprise of reduced levels of 2,3-Diphosphoglycerate (2,3-DPG), paralysis of sodium- potassium
Table 1: Restrictive strategy vs liberal strategy of red-cell transfusion

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants, groups</th>
<th>Type of study</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gobatto et al. (Crit Care. 2019)</td>
<td>N = 44, Head injured patients (Liberal group: 21, Restrictive group: 23)</td>
<td>Randomized controlled feasibility trial</td>
<td>There was negative correlation ($r = -0.265, p < 0.01$) between hemoglobin concentration and MCA flow velocity, and the incidence of post-traumatic vasospasm was significantly lower in the liberal strategy group (4/21, 3% vs 15/23, 65%; $p < 0.01$). Hospital mortality was higher in the restrictive than in the liberal group (7/23 vs 1/21; $p = 0.048$) and the liberal group tended to have a better neurological status at 6 months ($p = 0.06$). Similar mortality rates, including 30-day (23% vs 23%; $p = 1.00$), 60-day, hospital, and ICU mortality. Changes in MODS from baseline were significantly less in the restrictive group (0.2 ± 4.2 vs 1.3 ± 4.4; $p = .02$). The number of transfused red blood cell units was an independent risk factor for clinical complications or death at 30 days (HR for each additional unit, 1.2 [95% CI, 1.1-1.4]; $P = 0.002$).</td>
</tr>
<tr>
<td>Hébert PC et al. (CCM 2001)</td>
<td>Pts with CVS disease N = 357 (Restrictive 160, Liberal group: 197)</td>
<td>Prospective randomized controlled trial</td>
<td>The survival probability at 6 weeks was higher in the restrictive group (95% vs 91%; HR, 0.53; 95% [CI], 0.33 to 0.92; $P = 0.02$). Further bleeding occurred in lower no of patients (10% vs. 16F = 0.01), as well as lower no. adverse events in (40% vs. 48P = 0.02) in restrictive group. The probability of survival was significantly higher in the subgroup of patients with cirrhosis and Child–Pugh class A or B disease (HR, 0.30; 95% CI, 0.11 to 0.85), but not in those with cirrhosis and Child–Pugh class C disease (hazard ratio, 1.04; 95% CI, 0.45 to 2.37).</td>
</tr>
<tr>
<td>Hajjar LA et al. TRACS Trial (JAMA 2010)</td>
<td>N = 253 pts vs. 249 pts. 198 of 253 (liberal group) 118 of 249 (restrictive group) received transfusions.</td>
<td>Prospective Randomized Trial</td>
<td>The probability of sepsis at 28 days (8.6% vs 4.2%, $p < 0.01$), as well as the no. of ICU days (0.92 ± 0.5 vs. 0.92 ± 0.5, $p = .02$), and the no. of complications (40% vs. 48, $p = .02$) was higher in the restrictive group. The number of transfused red blood cell units was an independent risk factor for clinical complications or death at 30 days (HR for each additional unit, 1.2 [95% CI, 1.1-1.4]; $P = 0.002$).</td>
</tr>
<tr>
<td>Villanueva C et al. Acute UGI bleed (NEJM 2013)</td>
<td>N = 889, Restrictive group 444, Liberal group 445.</td>
<td>Prospective Randomized controlled clinical trial</td>
<td>No differences were reported by Herbert et al. when comparing clinical outcomes (death or a life-threatening complication) in a pilot trial. Koch’s et al. conducted a large retrospective trial (6002 patients) comparing transfusion with old vs fresh blood (11 vs 20 d). Patients given older units had higher in-hospital mortality (2.8% vs 1.7%, $P = 0.004$), needed prolonged intubation >72 h (9.7% vs 5.6%, $P < 0.001$), had higher incidence of renal failure (2.7% vs 1.6%, $P = 0.003$), and sepsis (4.0% vs 2.8%, $P = 0.01$). The beneficial effect on mortality was seen up to one year (7.4% vs 11.0%, $P < 0.001$) (Table 2).</td>
</tr>
<tr>
<td>Mazer et al. TRIC III, (NEJM 2017)</td>
<td>N = 5243, Cardiac surgery patients 2430 Restrictive, 2430 Liberal group</td>
<td>Multicenter, open-label, noninferiority trial</td>
<td>A restrictive strategy regarding red-cell transfusion was noninferior to a liberal strategy with respect to the composite outcome of death from any cause, myocardial infarction, stroke, or new-onset renal failure with dialysis, with less blood transfused.</td>
</tr>
</tbody>
</table>

pump (leading to leakage of intracellular K+) and most importantly the ability to deform, to reach the microcirculation. This led to the hypothesis that the transfusion of old blood may affect the efficacy of RBCs and outcomes of the patients given old blood. Walsh et al. comparing transfusion of old vs. fresh (5 d vs. 2 d) blood failed to show any difference in Pg–PaCO₂ gap, gastric pH, arterial pH, BE and lactate. The DPaO₂/FiO₂ were also found to be similar (fresh 5 d vs. 26 d old) in another study. No differences were reported by Herbert et al. when comparing clinical outcomes (death or a life-threatening complication) in a pilot trial. Koch’s et al. conducted a large retrospective trial (6002 patients) comparing transfusion with old vs fresh blood (11 vs 20 d). Patients given older units had higher in-hospital mortality (2.8% vs 1.7%, $P = 0.004$), needed prolonged intubation >72 h (9.7% vs 5.6%, $P < 0.001$), had higher incidence of renal failure (2.7% vs 1.6%, $P = 0.003$), and sepsis (4.0% vs 2.8%, $P = 0.01$). The beneficial effect on mortality was seen up to one year (7.4% vs 11.0%, $P < 0.001$) (Table 2).
Landmark Papers on Blood and Component Transfusion Therapy in the Critically Ill: A Critical Analysis

Indian Journal of Critical Care Medicine, September 2019;23 (Suppl 3)

we should continue the current practice of transfusing the oldest blood available in the blood bank (First in-first out).

In our daily practice in India, we must keep 2 facts in mind, while applying the results of these trials in particular and blood transfusion trials in general, in toto. The blood that is available in most advanced countries is universally leukodepleted before transfusion. The process of leukodepletion is costly and we generally do not use leukodepleted blood except in specific circumstances such as in patients undergoing transplants (this blood also undergoes gamma irradiation). Apart from causing RBC storage lesions, the residual leukocytes and platelets influence the contents of stored blood. Leukocyte deletion leads to reduced potassium leakage and hemolysis. Nonleukocyte-depleted RBCs have procoagulant effects and increased adherence potential to endothelium.10 We do not know fully how these factors would have affected the outcomes of the trials described above. Another confounding factor in these trials is a lack of definition of what is fresh and what is old blood. Since various trials have defined these differently, this also hampers interpretation of the results.

COMPONENT THERAPY AND OUTCOMES

Acute traumatic coagulopathy is a common occurrence. The putative causative mechanisms include exposure hypothermia, hemodilution due to intravenous fluid therapy, massive blood transfusion, and acidosis. Brohi et al15 examined data from over 1600 patients retrospectively and concluded that acute coagulopathy of trauma is a marker of injury severity and was directly related to mortality. Mediators released after trauma activate the coagulation, fibrinolysis, complement, and kallikrein systems. These affect the hemostatic mechanisms and lead to development of SIRS and MODS. Sperry et al.,22 analyzed data of 415 patients from the “Inflammation and the host response to injury, a large-scale collaborative project”23 who required >8 packed red blood cells (PRBCs) in first 12 hours. They hypothesized that the immediate mortality of patients with blunt trauma will be reduced when given FFP in a higher ratio, but the survivors will have a higher rate of complications (such as MODS and nosocomial infections) due to the infusion of FFPs. They found a significant reduction in the 24 h mortality (high F:P ratio 3.9% vs. low 12.8%, P = 0.012) but overall mortality was similar in 2 groups. Infusion of high F:P ratio in first 12 h was associated with lower mortality (adjusted HR 0.48, P = 0.002, 95% CI 0.3–0.8). However the incidence of nosocomial infections and ARDS was significantly higher in the high ratio group. Another study compared feasibility of achieving high fixed ratio transfusion (1:1:1) with lab-guided resuscitation.24 They concluded that high ratio infusion was possible but resulted in significant wastage of FFPs. The mortality and complications were similar in both the groups. The Prospective, Observational, Multicenter, Major Trauma Transfusion (PROMMTT) Study, found that the transfusion practices of Plasma: RBC and Platelet: RBC ratios in 24 h were varied.25 Higher Plasma: RBC (adjusted HR = 0.31; 95% CI, 0.16–0.58) and Platelet: RBC ratios (adjusted HR = 0.55; 95% CI, 0.31–0.98) led to a significant reduction in 6 h mortality (Table 3).

The truly landmark trial in this area was the PROPRR study.26 This was a prospective, pragmatic, multicenter, randomized trial. It included 680 patients requiring highest trauma level activation and predicted to require massive transfusions (by predefined criteria), who were randomized to receive blood products either in the ratio of 1:1:1 (338) or 1:1:2 (342). The treating physicians were blinded to the patient assignments till they opened the pre-packed containers of blood products, delivered to the ED within 10 min. The sequence of transfusion of all products was predetermined in the study protocol. Transfusion of blood products was stopped when clinically indicated. The primary outcome was 24 h and 30 day mortality. Data of 23 other complications was also collected. The clinicians assessing the outcomes were blinded to the group assignments and assigned one or more cause of death. There were no significant differences in mortality at 24 h or at 30 days. Death due to exsanguination was reduced (9.2% vs. 14.6% in 1:1:1 group; difference, −5.4% [95% CI, −10.4% to −0.5%]; P = 0.03) in patients who received transfusion at higher ratio since higher number of patients achieved hemostasis in this group (86% vs. 78%, P = 0.006).

Table 2: Storage time of blood and outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants, groups</th>
<th>Type of study</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamal JM et al (J Trauma Acute Care Surg. 2015)18</td>
<td>N = 125, Mean RBC age >21 d 68 patients, Mean RBC age <21 d 57 patients</td>
<td>Retrospective analysis of data from a trial (JAMA. 2014; 312:36-47),17 2 x 2 factorial randomized controlled trial</td>
<td>No association of RBC age with SjvO2 (jugular venous oxygen saturation) (linear regression β = 1.59; 95% CI = –2.99 –6.18; p = 0.49), brain tissue oxygenation (linear regression β = 0.20; 95% CI = –0.23 –0.63; p = 0.36), GOS score (odds ratio = 1.37; 95% CI = 0.53 – 3.57; p = 0.52), and mortality (hazard ratio = 1.35; 95% CI = 0.61 – 2.98; p = 0.46).</td>
</tr>
<tr>
<td>Steiner ME et al. (N Engl J Med. 2015) complex cardiac surgery.22</td>
<td>N = 1098 Red cell storage ≤10 d = 538 patients, Red cell storage ≥21 days = 560 patients</td>
<td>Randomized control trial</td>
<td>The median storage time 7 d vs 28 d The mean change in MODS was an increase of 8.5 and 8.7 points, respectively (95% CI, –0.6 to 0.3; P = 0.44). The 7-day mortality was 2.8% vs. 2.0% (p = 0.43) in the shorter-term storage group. 28-day mortality was 4.4% and 5.3%, respectively (P = 0.57). Hyperbilirubinemia more common in the longer-term storage group, no other effects.</td>
</tr>
<tr>
<td>Heddle NM et al. (N Engl J Med. 2016)20</td>
<td>N = 20,858 patients (with A or O group) short-term storage: 6936 patients; long-term storage: 13,922 patients</td>
<td>Randomized control trial</td>
<td>The mean storage duration was 13.0 vs 23.6 days. There were more deaths in short-term storage group (634 deaths (9.1%) vs 1213 (8.7%), OR, 1.05; 95% CI, 0.95 to 1.16; p = 0.34). Additional results were consistent in three prespecified high-risk subgroups (pts undergoing cardiovascular surgery, admitted to ICU, and those with cancer).</td>
</tr>
</tbody>
</table>
The rates of all 23 complications such as sepsis, MOF, ARDS and venous thromboembolism were similar in both groups.

This was a very well conducted trial with high levels of protocol adherence with appropriate separation of blood product ratios maintained throughout the study period. It was also blinded, had sufficiently large nos. (as per the adaptive design where the sample size was increased from 580 to 680 and nearly 100% patients accounted for at the end of follow up period (only 4/680 lost to follow-up). The limitations include problems in the sample size due to need for rapid enrollment, who would have been otherwise underpowered to detect the differences in mortality. Another limitation is inclusion of some patients with severe head injury due to need for rapid enrollment, who have been otherwise excluded, due to high expected likelihood of mortality. These patients then added to the increased mortality in both groups.

Thus, in spite of this trial being a negative trial with regards to the primary outcome (similar 24 h, 30 d mortality), it showed that transfusion of blood products in high ratio (1:1:1) reduces deaths due to exsanguination since a higher number of patients achieved hemostasis. We should aim to use higher ratios of blood products for initial resuscitation in severely injured patients who are expected to need massive transfusion.

REFERENCES

Landmark Papers on Blood and Component Transfusion Therapy in the Critically Ill: A Critical Analysis

Indian Journal of Critical Care Medicine, September 2019;23 (Suppl 3)

